山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (12): 67-71.doi: 10.6040/j.issn.1671-9352.0.2017.174
黄爱玲,林帅
HUANG Ai-ling, LIN Shuai
摘要: 局部量子Bernoulli噪声是局部的湮灭算子和增生算子族,满足局部等时典则反交换关系。考虑局部量子Bernoulli噪声意义下的线性随机Schrödinger方程,讨论了其解的存在唯一性,先验估计以及有限维逼近问题。
中图分类号:
[1] BARCHIELLI A, HOLEVO A S. Constructing quantum measurement processes via classical stochastic calculus[J]. Stochastic Processes and their Applications, 1995, 58(2):293-317. [2] BARCHIELLI A, PAGANONI A M, ZUCCA F. On stochastic differential equations and semigroups of probability operators in quantum probability[J]. Stochastic Processes and their Applications, 1998, 73(1):69-86. [3] HOLEVO A S. On dissipative stochastic equations in a Hilbert space[J]. Probability Theory and Related Fields, 1996, 104(4):483-500. [4] MORA C M. Numerical simulation of stochastic evolution equations associated to quantum markov semigroups[J]. Mathematics of Computation, 2004, 73(247):1393-1415. [5] MORA C M, REBOLLEDO R. Regularity of solutions to linear stochastic Schrödinger equations[J]. Infinite dimensional analysis, quantum probability and related topics, 2007, 10(2):237-259. [6] CHEN Jinshu, WANG Caishi. Linear stochastic Schrödinger equations in terms of quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2017, 58(5):1-12. [7] WANG Caishi, ZHANG Jihong. Localization of quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2013, 54(10):103502-103509. [8] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2010, 51(5):8. [9] PRIVAULT N. Stochastic analysis of Bernoulli processes[J]. Probability Surveys, 2008, 5:435-483. [10] KIST Tarso B L, ORSZAG M, BRUN T A, et al. Stochastic Schrödinger equations in cavity QED: physical interpretation and localization[J]. Journal of Optics B, 1999, 1(2):251-263. [11] PERCIVAL I. Quantum state diffusion[M]. Cambridge: Cambridge University Press, 1998. |
[1] | 董亚莹. 一类空间退化的捕食-食饵模型的全局分歧结构[J]. 山东大学学报(理学版), 2018, 53(4): 76-84. |
[2] | 王萍莉, 石东洋. Schrödinger方程双线性元的 超收敛分析和外推[J]. 山东大学学报(理学版), 2014, 49(10): 66-71. |
[3] | 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33. |
[4] | 姜良站,李艳玲*. 一类具有常数避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2011, 46(2): 15-21. |
[5] | 陆瑶1,李德生2,杨洋1. 非线性SchrÖdinger方程的Fourier谱逼近[J]. J4, 2011, 46(1): 119-126. |
[6] | 王娟1,刘辉昭2. 一类抛物型Monge-Ampère方程具Neumann边界条件的初边值问题[J]. J4, 2010, 45(6): 70-73. |
[7] | 别群益. 具避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2009, 44(3): 50-55 . |
|