《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 79-84.doi: 10.6040/j.issn.1671-9352.0.2019.192
• • 上一篇
张霞,张建华*
ZHANG Xia, ZHANG Jian-hua*
摘要: 设U=Tri(A,M,B )是含单位元1的三角代数,1A、1B分别是A和B的单位元。对任意的A∈A, B∈B分别存在整数k1、k2,使得k11A-A, k21B-B在三角代数中可逆。利用代数分解的方法,证明了如果{φn}n∈N:U→U是一列线性映射满足对任意的U,V∈U且UV=VU=1,有φn([U,V]ξ)=∑i+j=nφi(U)φj(V)-ξφi(V)φj(U)(ξ≠0,1),则{φn}n∈N是U上的高阶导子,其中φ0=id0是恒等映射,[U,V]ξ=UV-ξVU。
中图分类号:
[1] ZHAO Jinping, ZHU Jun. Jordan higher all-derivable points in triangular algerbras[J]. Linear Algebra Appl, 2012, 436(9):3072-3086. [2] LIU Dan, ZHANG Jianhua. Jordan higher derivable maps on triangular algebras by commutative zero products[J]. Acta Math Sinica, 2016, 32(2):258-264. [3] ZENG Hongyan, ZHU Jun. Jordan higher all-derivable points on nontrivial nest algebra[J]. Linear Algebra Appl, 2011, 434(2):463-474. [4] ZHEN Nannan, ZHU Jun. Jordan higher all-derivable points in nest algebras[J]. Taiwanese Journal of Mathematics, 2012, 16(6):1959-1970. [5] 费秀海, 张建华. 三角代数上零点处的高阶ξ-Lie可导映射[J]. 陕西师范大学学报(自然科学版), 2015, 43(3):6-9. FEI Xiuhai, ZHANG Jianhua. Higher ξ-Lie derivable maps on triangular algebras at zero point[J]. Journal of Shannxi Normal University(Natural Science), 2015, 43(3):6-9. [6] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebra[J]. Linear Algebra Appl, 2010, 432(1):2615-2622. [7] LI Jiankui, ZHOU Jiren. Characterizations of Jordan derivations and Jordan homomorphisms[J]. Linear and Multilinear Algebra, 2011, 59(3):193-204. [8] AN Runling, HOU Jinchuan. Characterizations of derivations on triangular rings: additive maps derivable at idempotents[J]. Linear Algebra Appl, 2009, 431(5/6/7):1070-1080. [9] MIZAVAZIRI M. Characterization of higher derivations on algebras[J]. Communications in Algebra, 2010, 38(3):981-987. [10] QI Xiaofei, HOU Jinchuan. Additive Lie(ξ-Lie)derivations and generalized Lie(ξ-Lie)derivations on nest algebras[J]. Linear Algebra Appl, 2009, 431(5/6/7):843-854. [11] JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435(5):1137-1146. [12] QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products[J]. Linear Algebra Appl, 2011, 434(3):669-682. [13] ZHANG Xu, AN Runling, HOU Jinchuan. Characterizations of higher derivations on CLS algerbras[J]. Epo Math, 2013, 31(4):392-404. |
[1] | 费秀海,张建华. 三角代数上关于内导子空间Lie不变的线性映射[J]. 《山东大学学报(理学版)》, 2019, 54(2): 79-83. |
[2] | 武鹂,张建华. 三角代数上Lie积为平方零元的非线性Jordan可导映射[J]. 山东大学学报(理学版), 2017, 52(12): 42-47. |
[3] | 胡丽霞,张建华. 三角代数上的零点Lie高阶可导映射[J]. J4, 2013, 48(4): 5-9. |
[4] | 纪培胜,綦伟青,刘忠燕 . II1型超有限因子中的三角代数的Jordan理想[J]. J4, 2008, 43(4): 6-08 . |
|