《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 46-49.doi: 10.6040/j.issn.1671-9352.0.2019.391
• • 上一篇
张芳娟
ZHANG Fang-juan
摘要: 设R是有单位元的*-代数,若R包含非平凡对称幂等元P满足:(1)若ARP={0},则A=0;(2)若AR(I-P)={0},则A=0。设φ:R→R是满射,则φ强保持新积当且仅当存在Z∈ZS(R)且Z2=I,使得对所有X∈R, 有φ(X)=ZX。作为应用,在没有I1型的中心直和项的von Neumann代数上和素*-环上得到相似的结果。
中图分类号:
[1] ŠEMRL P. Quadratic functionals and Jordan *-derivations[J]. Studia Mathematica, 1991, 97(3):157-165. [2] ŠEMRL P. On Jordan *-derivations and an application[J]. Colloquium Mathematicum, 1990, 59(2):241-251. [3] MOLNÁR L. A condition for a subspace of B(H) to be an ideal[J]. Linear Algebra and Its Applications, 1996, 235:229-234. [4] BREŠAR M, FOSNER M. On rings with involution equipped with some new product[J]. Publications Mathematicae-Debrecen, 2000, 57(1/2):121-134. [5] CHEBOTAR M A, FONG Y, LEE P-H. On maps preserving zeros of the polynomial xy-yx*[J]. Linear Algebra and Its Applications, 2005, 408:230-243. [6] CUI Jianlian, PARK C. Maps preserving strong skew Lie product on factor von Neumann algebras[J]. Acta Mathematica Scientia Series B, 2012, 32(2):531-538. [7] LI Changing, CHEN Quanyuan. Strong skew commutativity preserving maps on rings with involution[J]. Linear Algebra and Its Applications, 2016, 32(6):745-752. [8] HOU Jinchuan, WANG Wei. Strong 2-skew commutativity preserving maps on prime rings with involution[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(1):33-49. [9] LIN J S, LIU C K. Strong commutativity preserving maps in prime rings with involution[J]. Linear Algebra and Its Applications, 2010, 432(1):14-23. [10] QI Xiaofei, HOU Jinchuan. Strong skew commutativity preserving maps on von Neumann algebras[J]. Journal of Mathematical Analysis and Applications, 2013, 397(1):362-370. [11] BAI Zhaofang, DU Shuanping. Strong commutativity preserving maps on rings[J]. Rocky Mountain Journal of Mathematics, 2014, 44(3):733-742. [12] KADISON R V, RINGROSE J R. Fundamentals of the theory of operator algebras: Vol. I[M]. New York: Academic Press, 1983. [13] KADISON R V, RINGROSE J R. Fundamentals of the theory of operator algebras: Vol. II[M]. New York: Academic Press, 1986. [14] ARA P. The extended centroid of C*-algebras[J]. Archiv Der Mathematik, 1990, 54(4):358-364. |
[1] | 周建仁1,2,吴洪博2*. IMTL逻辑代数的一种新强化形式[J]. 山东大学学报(理学版), 2014, 49(04): 84-89. |
[2] | 武淑霞,刘晓冀*. C*-代数上的广义逆序律[J]. J4, 2011, 46(4): 82-85. |
[3] | 方莉1,白维祖2. 保持幂等算子乘积或约当三乘积非零幂等性的映射[J]. J4, 2010, 45(12): 98-105. |
[4] | 崔云丽 张建华. 因子von Neumann代数上的多项式零点保持线性映射[J]. J4, 2009, 44(10): 48-50. |
|