您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 74-78.doi: 10.6040/j.issn.1671-9352.0.2018.756

• • 上一篇    

Frobenius扩张上的Ding投射模

王占平,张睿杰*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2019-12-11
  • 作者简介:王占平(1978— ),女,教授,硕士生导师,研究方向为环的同调理论. E-mail:359220363@qq.com*通信作者简介:张睿杰(1993— ),男,硕士研究生,研究方向为环的同调理论. E-mail:936295823@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11561061)

Ding projective modules over Frobenius extensions

WANG Zhan-ping, ZHANG Rui-jie*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2019-12-11

摘要: 研究了Frobenius扩张上的Ding投射模和Ding投射维数。设R⊂A是可分Frobenius扩张,M是任意左A-,证明了:M是Ding投射左A-模当且仅当M是Ding投射左R-模当且仅当A⊗RM和HomR(A,M)是Ding投射左A-模。进一步,得到了关于Ding投射维数的结论。

关键词: Frobenius扩张, Ding投射模, Ding投射维数

Abstract: Ding projective modules over Frobenius extensions and Ding projective dimensions are investigated. Let R⊂A be a separable Frobenius extension, and let M be any left A-module. It is proved that M is a Ding projective left A-module if and only if M is Ding projective left R-module if and only if ARM and HomR(A,M) are Ding projective left A-modules. Some the conclusion on Ding projective Dimensions are obtained.

Key words: Frobenius extensions, Ding projective modules, Ding projective dimensions

中图分类号: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(4):611-633.
[2] ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing University Mathematical Biquarterly, 1993, 10:1-9.
[3] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. J Aust Math Soc, 2009, 86(3):323-338.
[4] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology, Homotopy and Applications, 2010, 12:61-73.
[5] YANG Gang, LIU Zhongkui, LIANG Li. Ding projective and Ding injective modules[J]. Algebra Colloquium, 2013, 20(4):601-612.
[6] WANG Zhanping, LIU Zhongkui. Strongly Gorenstein at dimension of complexs[J]. Comm Algebra, 2016, 44(4):1390-1410.
[7] KASCH F. Grundlagen einer theorie der Frobeniuserweiterungen[J]. Math Ann, 1954, 127:453-474.
[8] NAKAYAMA T, TSUZUKU T. On Frobenius extensions: I[J]. Najoya Math J, 1960, 17:89-110.
[9] NAKAYAMA T, TSUZUKU T. On Frobenius extensions: II[J]. Nagoya Math J, 1961, 19:127-148.
[10] MORITA K. Adjoint pair of functors and Frobenius extensions[J]. Sc Rep T K D, 1965, 9:40-71.
[11] CHEN Xiaowu. Totally reexive extensions and models[J]. J Algebra, 2013, 376:322-332.
[12] REN Wei. Gorenstein projective and injective dimensions over Frobenius extensions[J]. Comm Algebra, 2018: 1-7.
[13] KADISON L. New examples of Frobenius extensions[M] // University Lecture Series, Vol 14. Providence: Amer Math Soc, 1999.
[14] REN Wei. Gorenstein projective modules and Frobenius extensions[J]. Sci China Math, 2018, 7:1-12.
[1] 张铭,张文汇. n-Ding投射模和n-Ding内射模[J]. 《山东大学学报(理学版)》, 2019, 54(4): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!