《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 32-40.doi: 10.6040/j.issn.1671-9352.0.2019.458
• • 上一篇
刘妍平
LIU Yan-ping
摘要: 研究GI-模和余自反复形及其性质,证明任意Artin模有有限的GI-维数当且仅当它作为复形是余自反的。同时研究复形的GI-维数,得到同调层次Artin的同调左有界复形的GI-维数有限当且仅当它是余自反的。
中图分类号:
[1] ENOCHS E E, JENDA O M G. On Gorenstein injective modules[J]. Communications in Algebra, 1993, 21(10):3489-3501. [2] AUSLANDER M, BRIDGER M. Stable module theory[J]. Memoirs of the American Mathematical Society, 1969, 94(94):9-11. [3] CHRISTENSEN L W. Gorenstein dimensions[M]. Berlin: Springer-Verlag, 2000. [4] CHRISTENSEN L W, FRANKILD A, HOLM H. On Gorenstein projective, injective and flat dimensions: a functorial description with applications[J]. Journal of Algebra, 2006, 302(1):231-279. [5] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(4):611-633. [6] KHATAMI L, TOUSI M, YASSEMI S. Finiteness of Gorenstein injective dimension of modules[J]. Proceedings of the American Mathematical Society, 2009, 137(7):2201-2207. [7] KHATAMI L, YASSEMI S. A Bass formula for Gorenstein injective dimension[J]. Communications in Algebra, 2007, 35(6):1882-1889. [8] XU Jinzhong. Flat covers of modules[M]. Berlin: Springer-Verlag, 1996. [9] HIREMATH V A. Coflat modules[J]. Indian Journal of Pure and Applied Mathematics, 1986, 17(2):223-230. [10] ENOCHS EE, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. [11] SAZEEDEH R.Gorenstein injective modules and a generalization of Ischebeck formula[J]. Journal of Algebra and Its Applications, 2013, 12(4):1250197. [12] CHRISTENSEN L W. Semi-dualizing complexes and their Auslander categories[J]. Transactions of the American Mathematical Society, 2001, 353(5):1839-1883. [13] FRANKILD A, JORGENSEN P. Foxby equivalence, complete modules, and torsion modules[J]. Journal of Pure and Applied Algebra, 2002, 174(2):135-147. |
[1] | 王超. 上三角矩阵Artin代数上的Gorenstein内射模[J]. 山东大学学报(理学版), 2016, 51(2): 89-93. |
[2] | 王欣欣. 强Ω-Gorenstein内射模[J]. J4, 2013, 48(2): 23-26. |
|