您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (3): 54-66.doi: 10.6040/j.issn.1671-9352.4.2020.238

• • 上一篇    

区间值q阶犹豫模糊Frank集成算子及其决策应用

黄林,袁修久,索中英,庞梦洋,包壮壮,李智伟   

  1. 空军工程大学基础部, 陕西 西安 710051
  • 发布日期:2021-03-16
  • 作者简介:黄林(1996— ),男,硕士研究生,研究方向系统仿真、模糊决策. E-mail:huanglin199610@163.com
  • 基金资助:
    国家自然科学基金资助项目(11671007);陕西省自然科学基金资助项目(2019JM-271)

Interval-valued q-rung hesitant fuzzy frank aggregation operators and their application in multi-attribute decision making

HUANG Lin, YUAN Xiu-jiu, SUO Zhong-ying, PANG Meng-yang, BAO Zhuang-zhuang, LI Zhi-wei   

  1. Department of Basic Sciences, Air Force Engineering University, Xian 710051, Shaanxi, China
  • Published:2021-03-16

摘要: 将q阶犹豫模糊集进行了拓展,提出了区间值q阶犹豫模糊集;并将Frank算子与区间值q阶犹豫模糊集相结合,提出了区间值q阶犹豫模糊Frank集成算子。首先,基于Frank算子定义了区间值q阶犹豫模糊元的运算性质,提出了区间值q阶犹豫模糊元的得分函数、精确函数及其排序方法;其次,定义了区间值q阶犹豫模糊Frank算术平均算子、几何平均算子、有序加权平均算子以及混合平均算子,分别给出了算子的计算公式,研究了其相关性质并讨论了算子的特殊形式;最后,给出一种基于区间值q阶犹豫模糊Frank集成算子的多属性决策方法,通过算例和比较分析说明了方法的可行性与有效性。该方法可以根据决策者的风险偏好态度灵活地选择参数以满足不同决策情况的要求。

关键词: 区间值q阶犹豫模糊集, Frank算子, 算术平均算子, 几何平均算子, 混合平均算子, 多属性决策

Abstract: In this article, the q-rung hesitant fuzzy set is extended, and interval-valued q-rung hesitant fuzzy set is proposed. Combining Frank operator with interval-valued q-rung hesitant fuzzy set, the interval-valued q-rung hesitant fuzzy Frank aggregation operators are proposed. Firstly, based on the Frank operator, the operation properties of interval-valued q-rung hesitant fuzzy elements are defined, and the score function, accuracy function and ranking method of interval-valued q-rung hesitant fuzzy elements are proposed. Secondly, the interval-valued q-rung hesitant fuzzy Frank arithmetic average operator, geometric average operator, ordered weighted average operator and hybrid average operator are defined. The calculation formulas of the operators are given respectively, the related properties are studied, and the special forms of the operators are discussed. Finally, a multi-attribute decision-making method based on interval-valued q-rung hesitant fuzzy Frank aggregation operator is given, and the feasibility and effectiveness of the method are demonstrated through calculation examples and comparative analysis. This method can flexibly choose parameters according to the risk preference attitude of the decision maker to meet the requirements of different decision-making situations.

Key words: interval-valued q-rung hesitant fuzzy set, Frank operator, arithmetic average operator, geometric average operator, hybrid average operator, multiple-attribute decision making

中图分类号: 

  • O159
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-356.
[2] ATANASSOV K T. Intuitionistic fuzzy set[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] YAGER R R. Pythagorean fuzzy subsets[C] //2013 Joint IFSA World Congress and NAFIPS Annual Meeting(IFSA/NAFIPS). Edmonton: IEEE, 2013:57-61.
[4] ZHANG R, WANG J, ZHU X, et al. Some generalized Pythagorean fuzzy Bonferroni mean aggregation operators with their application to multi-attribute group decision-making[J]. Complexity, 2017, 2017(6):1-16.
[5] 彭定洪,杨扬.毕达哥拉斯模糊Heronian算子的多属性决策方法[J].计算机应用研究,2020,37(1):153-157. PENG Dinghong, YANG Yang. Multi-attribute decision-making method of Pythagoras fuzzy Heronian operator[J]. Application Research of Computers, 2020, 37(1):153-157.
[6] 刘卫锋,常娟,何霞.毕达哥拉斯模糊Hamacher集成算子及其决策应用[J].系统工程理论与实践,2018,38(6):1566-1574. LIU Weifeng, CHANG Juan, HE Xia. Pythagorean fuzzy Hamacher integration operator and its decision-making application[J].Systems Engineering Theory and Practice, 2018, 38(6):1566-1574.
[7] WEI G, LU M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making[J]. International Journal of Intelligent Systems, 2018, 33(1):169-186.
[8] GARG H. A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making[J]. International Journal of Intelligent Systems, 2016, 31(9):886-920.
[9] YAGER R R. Generalized orthopair fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2016, 25(5):1222-1230.
[10] LIU P, WANG P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making[J]. International Journal of Intelligent Systems, 2017, 33(2):259-280.
[11] LIU P, LIU J. Some q-rung orthopai fuzzy bonferroni mean operators and their application to multi-attribute group decision making[J]. International Journal of Intelligent Systems, 2018, 33(2):315-347.
[12] TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25(6):529-539.
[13] TORRA V, NARUKAWA Y. On the hesitant fuzzy sets and decision[C] //Proceedings of the 18th IEEE International Conference on Fuzzy Systems. Jeju Island: IEEE, 2009: 1378-1382.
[14] ZHU B, XU Z, XIA M. Dual hesitant fuzzy sets[J]. Journal of Applied Mathematics, 2012, 26(2):260-271.
[15] 刘卫锋,何霞.毕达哥拉斯犹豫模糊集[J].模糊系统与数学,2016,30(4):107-115. LIU Weifeng, HE Xia. Pythagoras hesitant fuzzy set[J]. Fuzzy Systems and Mathematics, 2016, 30(4):107-115.
[16] 何霞,刘卫锋,杜迎雪.毕达哥拉斯犹豫模糊集成算子及其决策应用[J].计算机应用研究,2020,37(8):2338-2343. HE Xia, LIU Weifeng, DU Yingxue. Pythagoras hesitant fuzzy integration operator and its decision application[J]. Application Research of Computers, 2020, 37(8):2338-2343.
[17] WEI G, LU M, TANG X, et al. Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making[J]. International Journal of Intelligent Systems, 2018, 33(6):1197-1233.
[18] 徐玥,刘练珍.q阶犹豫模糊集及其在决策中的应用[J].模式识别与人工智能,2018,31(9):816-836. XU Yue, LIU Lianzhen. The q-order hesitant fuzzy set and its application in decision making[J].Pattern Recognition and Artificial Intelligence, 2018, 31(9):816-836.
[19] 王军.基于正交模糊信息集成算子的多属性决策方法研究[D]. 北京:北京交通大学,2019. WANG Jun. Research on multi-attribute decision-making method based on orthogonal fuzzy information integration operator [D]. Beijing:Beijing Jiaotong University, 2019.
[20] 彭定洪,杨扬.基于毕达哥拉斯模糊Frank算子的多属性决策方法[J].计算机应用,2019,39(2):316-322. PENG Dinghong, YANG Yang. Multi-attribute decision-making method based on Pythagorean fuzzy Frank operator[J]. Computer Applications, 2019, 39(2):316-322.
[21] DESCHRIJVER G. Generalized arithmetic operators and their relationship to t-norms in interval-valued fuzzy set theory[J]. Fuzzy Sets and Systems, 2009, 160(21):3080-3102.
[1] 杜文胜,徐涛. 广义正交模糊混合平均算子及其在多属性决策中的应用[J]. 《山东大学学报(理学版)》, 2021, 56(1): 35-42.
[2] 王中兴,唐芝兰,牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J]. J4, 2012, 47(9): 92-97.
[3] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33-37 .
[4] 张方伟,曲淑英,王志强,姚炳学,曾现洋 . 偏差最小化方法及其在多属性决策中的应用[J]. J4, 2007, 42(3): 32-35 .
[5] 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!