您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 76-85.doi: 10.6040/j.issn.1671-9352.0.2020.356

• • 上一篇    

En中的几何概率及其极值

赵江甫   

  1. 福建江夏学院数理教研部, 福建 福州 350108
  • 发布日期:2021-04-13
  • 作者简介:赵江甫(1985— ),女,硕士,讲师,研究方向为积分几何与几何概率. E-mail:2833811196@qq.com
  • 基金资助:
    福建省教育厅中青年教师教育科研基金资助项目(JT180585);福建江夏学院科研培育人才基金资助项目(JXZ2019016)

Geometric probability and its extremes in En

ZHAO Jiang-fu   

  1. Department of Mathematics and Physics, Fujian Jiangxia University, Fuzhou 350108, Fujian, China
  • Published:2021-04-13

摘要: 三维空间中,三个与凸体K相交的平面的公共点落入K内的概率已有结果为了将此结论推广到更一般的n维欧式空间,L、G、HEn中与凸体K相交的3个超平面,利用积分几何的方法,给出超平面束的交L∩G∩H与凸体K相交的几何概率,并利用等周不等式,得到此概率序列的极大值。利用Minkowski不等式和Cauchy公式,给出En中超平面偶的交L∩G与凸体K相交的几何概率的极大值。根据上述结论,得到两个关于超几何函数的不等式。

关键词: 平均曲率积分, 几何概率, 蒲丰投针, 极值问题, 超平面束

Abstract: The probability that three planes in 3-dimensional Euclidean space intersecting a convex body K have their common point inside K has been obtained. In order to extend the above conclusion to more general n-dimensional Euclidean space, let L, G, H be three randomly chosen hyperplanes, that intersect a convex body K in En. The probability that L∩G∩H intersecting the convex body K is given by method of integral geometry. And then the Extreme value of this probabilistic sequence is obtained through isoperimetric inequalities. The maximum of probability that L∩G intersecting the convex body K is found by using of Minkowski inequality and Cauchys formula. As their application, two inequalities about hypergeometric functions are given.

Key words: mean curvature integral, geometric probability, Buffon needle throwing, extremum problem, hyperplanes

中图分类号: 

  • O186.5
[1] 张健,万正权,张充霖,等. 船-冰碰撞几何概率计算方法及影响因素研究[J]. 船舶力学,2013(4):382-388. ZHANG Jian, WAN Zhengquan, ZHANG Chonglin, et al. Calculation method research of geometric collision probability for ship and ice[J]. Journal of Ship Mechanics, 2013(4):382-388.
[2] 黄利文,毛政元,李二振,等. 基于几何概率的聚类分析方法及其在遥感影像分类中的应用[J]. 中国图象图形学报,2007,12(4):633-640. HUANG Liwen, MAO Zhengyuan, LI Erzhen, et al. The cluster analysis approaches based on geometric probability and its application in the classification of remotely sensed images[J]. Journal of Image and Graphics, 2007,12(4):633-640.
[3] USPENSKY J V. Introduction to mathematical probability[M]. New York: McGraw-Hill,1937.
[4] SANTALO L A. Integral geometry and geometric probability[M]. London: Cambridge University Press, 2004.
[5] 邹明田,李寿贵,陈莉莉. 一类特殊网格的几何概率[J]. 数学杂志,2014,34(2):374-378. ZOU Mingtian, LI Shougui, CHEN Lili. A special class of the grid geometric probability[J]. Journal of Mathematics, 2014, 34(2):374-378.
[6] 黄朝霞. 蒲丰投针问题研究[J]. 集美大学学报(自然科学版), 2005, 10(4):381-384. HUANG Zhaoxia. Study on Buffon throwing problem[J]. Journal of Jimei University(Natural Science), 2005, 10(4):381-384.
[7] 张高勇,黎荣泽. 某些凸多边形内定长线段运动测度公式及其在几何概率中的应用[J]. 武汉钢铁学院学报,1984,1(4):106-128. ZHANG Gaoyong, LI Rongze. The kinematic measure formulae of segment of fixed length within some convex polyons and their applications to geometric probility problems[J]. Journal of Wuhan Institute of Iron and Steel, 1984,1(4):106-128.
[8] 马丽,韩新方,杨小雪. 蒲丰(Buffon)投针问题的一些推广[J]. 海南师范大学学报,2013,26(2):133-144. MA Li, HAN Xinfang, YANG Xiaoyue. Some extensions on Buffons needle problem[J]. Journal of Hainan Normal University(Natural Science), 2013, 26(2):133-144.
[9] 胡玲. 一类几何概率问题的推广[J]. 工科数学,1999,15(1):149-151. HU Ling. The generalized problem of geometric probability[J]. Journal of Mathematics for Technology, 1999, 15(1):149-151.
[10] 任德麟. 积分几何引论[M]. 上海:上海科学技术出版社,1988. REN Delin. Introduction for integral geometry[M]. Shanghai: Shanghai Science and Technology Press, 1988.
[11] YU Xiaoqing. Double chord power integrals in R3[J]. Journal of Mathematics, 2007, 27(5):525-528.
[12] 谢鹏,范媛媛,蒋君. 随机针偶与凸体K相交的几何概率问题[J]. 数学杂志,2006,26(6):669-672. XIE Peng, FAN Yuanyuan, JIANG Jun. A problem of geometric probability for random pairs of needles intersecting a convex body K[J]. Jouanal of Mathematics, 2006, 26(6):669-672.
[13] 赵江甫,谢鹏,蒋君.超平面偶与凸体相交的几何概率[J]. 应用数学,2016,29(1):231-238. ZHAO Jiangfu, XIE Peng, JIANG Jun. Geometric probability for pairs of hyperplanes intersecting with a convex body[J]. Mathematica Applicata, 2016, 29(1):231-238.
[14] 赵江甫. Rn中超平面偶与特殊凸体相交的几何概率问题[J]. 厦门理工学院学报,2020,28(1):89-95. ZHAO Jiangfu. Geometric probability of pairs of hyperplanes intersecting with special bodies in Rn[J]. Journal of Xiamen University of Technology, 2020, 28(1):89-95.
[15] ZHANG Gaoyong. Dual kinematic formulas[J]. Transactions of the American Mathematical Society, 1999, 351(3):985-995.
[16] 曾春娜,柏仕坤. 关于凸集的平均曲率积分不等式(Ⅱ)[J]. 重庆师范大学学报(自然科学版),2017,34(6):57-60. ZENG Chunna, DU Shikun. Some inequalities on mean curvature integral of convex sets(Ⅱ)[J]. Journal of Chongqing Normal University(Natural Science), 2017, 34(6):57-60.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!