《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 76-85.doi: 10.6040/j.issn.1671-9352.0.2020.356
• • 上一篇
赵江甫
ZHAO Jiang-fu
摘要: 三维空间中,三个与凸体K相交的平面的公共点落入K内的概率已有结果。为了将此结论推广到更一般的n维欧式空间,设L、G、H为En中与凸体K相交的3个超平面,利用积分几何的方法,给出超平面束的交L∩G∩H与凸体K相交的几何概率,并利用等周不等式,得到此概率序列的极大值。利用Minkowski不等式和Cauchy公式,给出En中超平面偶的交L∩G与凸体K相交的几何概率的极大值。根据上述结论,得到两个关于超几何函数的不等式。
中图分类号:
[1] 张健,万正权,张充霖,等. 船-冰碰撞几何概率计算方法及影响因素研究[J]. 船舶力学,2013(4):382-388. ZHANG Jian, WAN Zhengquan, ZHANG Chonglin, et al. Calculation method research of geometric collision probability for ship and ice[J]. Journal of Ship Mechanics, 2013(4):382-388. [2] 黄利文,毛政元,李二振,等. 基于几何概率的聚类分析方法及其在遥感影像分类中的应用[J]. 中国图象图形学报,2007,12(4):633-640. HUANG Liwen, MAO Zhengyuan, LI Erzhen, et al. The cluster analysis approaches based on geometric probability and its application in the classification of remotely sensed images[J]. Journal of Image and Graphics, 2007,12(4):633-640. [3] USPENSKY J V. Introduction to mathematical probability[M]. New York: McGraw-Hill,1937. [4] SANTALO L A. Integral geometry and geometric probability[M]. London: Cambridge University Press, 2004. [5] 邹明田,李寿贵,陈莉莉. 一类特殊网格的几何概率[J]. 数学杂志,2014,34(2):374-378. ZOU Mingtian, LI Shougui, CHEN Lili. A special class of the grid geometric probability[J]. Journal of Mathematics, 2014, 34(2):374-378. [6] 黄朝霞. 蒲丰投针问题研究[J]. 集美大学学报(自然科学版), 2005, 10(4):381-384. HUANG Zhaoxia. Study on Buffon throwing problem[J]. Journal of Jimei University(Natural Science), 2005, 10(4):381-384. [7] 张高勇,黎荣泽. 某些凸多边形内定长线段运动测度公式及其在几何概率中的应用[J]. 武汉钢铁学院学报,1984,1(4):106-128. ZHANG Gaoyong, LI Rongze. The kinematic measure formulae of segment of fixed length within some convex polyons and their applications to geometric probility problems[J]. Journal of Wuhan Institute of Iron and Steel, 1984,1(4):106-128. [8] 马丽,韩新方,杨小雪. 蒲丰(Buffon)投针问题的一些推广[J]. 海南师范大学学报,2013,26(2):133-144. MA Li, HAN Xinfang, YANG Xiaoyue. Some extensions on Buffons needle problem[J]. Journal of Hainan Normal University(Natural Science), 2013, 26(2):133-144. [9] 胡玲. 一类几何概率问题的推广[J]. 工科数学,1999,15(1):149-151. HU Ling. The generalized problem of geometric probability[J]. Journal of Mathematics for Technology, 1999, 15(1):149-151. [10] 任德麟. 积分几何引论[M]. 上海:上海科学技术出版社,1988. REN Delin. Introduction for integral geometry[M]. Shanghai: Shanghai Science and Technology Press, 1988. [11] YU Xiaoqing. Double chord power integrals in R3[J]. Journal of Mathematics, 2007, 27(5):525-528. [12] 谢鹏,范媛媛,蒋君. 随机针偶与凸体K相交的几何概率问题[J]. 数学杂志,2006,26(6):669-672. XIE Peng, FAN Yuanyuan, JIANG Jun. A problem of geometric probability for random pairs of needles intersecting a convex body K[J]. Jouanal of Mathematics, 2006, 26(6):669-672. [13] 赵江甫,谢鹏,蒋君.超平面偶与凸体相交的几何概率[J]. 应用数学,2016,29(1):231-238. ZHAO Jiangfu, XIE Peng, JIANG Jun. Geometric probability for pairs of hyperplanes intersecting with a convex body[J]. Mathematica Applicata, 2016, 29(1):231-238. [14] 赵江甫. Rn中超平面偶与特殊凸体相交的几何概率问题[J]. 厦门理工学院学报,2020,28(1):89-95. ZHAO Jiangfu. Geometric probability of pairs of hyperplanes intersecting with special bodies in Rn[J]. Journal of Xiamen University of Technology, 2020, 28(1):89-95. [15] ZHANG Gaoyong. Dual kinematic formulas[J]. Transactions of the American Mathematical Society, 1999, 351(3):985-995. [16] 曾春娜,柏仕坤. 关于凸集的平均曲率积分不等式(Ⅱ)[J]. 重庆师范大学学报(自然科学版),2017,34(6):57-60. ZENG Chunna, DU Shikun. Some inequalities on mean curvature integral of convex sets(Ⅱ)[J]. Journal of Chongqing Normal University(Natural Science), 2017, 34(6):57-60. |
No related articles found! |
|