《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (10): 38-47.doi: 10.6040/j.issn.1671-9352.9.2021.007
• • 上一篇
芮洪兴,龙新雨
RUI Hong-xing, LONG Xin-yu
摘要: 研究采用二重网格混合有限元法求解多孔介质中不可压缩混相驱替问题,其中,该问题的速度与压力的关系由Darcy-Forchheimer定律描述。 主要目的是将在细网格上求解一个大规模非线性系统转换为在粗网格上求解一个小规模非线性系统以及在细网格上求解一个线性系统。求解非线性系统需要用迭代法,而转换为线性系统后,只需要解线性代数方程组,可以大大提高运算的速度。在本文中,我们用混合元逼近速度和压力,用一般的有限元逼近组分浓度。在本文的数值实验中,我们验证了细网格上的误差估计,以及计算效率。
中图分类号:
[1] AZIZ K, SETTARI A. Petroleum reservoir simulation[M]. [S.l.] : Applied Science Publishers LTD, 1979. [2] BREZZI F, DOUGLASJr J, DURAN R, et al. Mixed finite elements for second order elliptic problems in three variables[J]. Numerische Mathematik, 1987, 51(2):237-250. doi:10.1007/bf01396752. [3] BREZZI F, DOUGLAS Jr J, MARINI L D. Two families of mixed finite elements for second order elliptic problems[J]. Numerische Mathematik, 1985, 47(2):217-235. doi:10.1007/bf01389710. [4] DOUGLAS Jr J, PAES-LEMEP J, GIORGI T. Generalized Forchheimer flow in porous media,in boundary value problems for partial differential equations and applications[M]. Amsterdam: Elsevier Science Publishers, 1993: 207-216. [5] FAIRAG F A, AUDU J D. Two-level Galerkin mixed finite element method for Darcy: Forchheimer model in porous media[J]. SIAM Journal on Numerical Analysis, 2020, 58(1):234-253. doi:10.1137/17m1158161. [6] GIRAULT V, WHEELER M F. Numerical discretization of a Darcy-Forchheimer model[J]. Numerische Mathematik, 2008,110(2):161-198. doi:10.1007/s00211-008-0157-7. [7] LI X L, RUI H X. A fully conservative block-centered finite difference method for Darcy-Forchheimer incompressible miscible displacement problem[J]. Numerical Methods for Partial Differential Equations, 2020, 36(1):66-85. doi:10.1002/num.22400. [8] LIU S, CHEN Y P, HUANG Y Q, et al. Two-grid methods for miscible displacement problem by Galerkin methods and mixed finite-element methods[J]. International Journal of Computer Mathematics, 2018, 95(8):1453-1477. doi:10.1080/00207160.2017.1322689. [9] LIU W, CUI J T. A two-grid block-centered finite difference algorithm for nonlinear compressible Darcy-Forchheimer model in porous media[J]. Journal of Scientific Computing, 2018, 74(3):1786-1815. doi:10.1007/s10915-017-0516-6. [10] LOPEZ H, MOLINA B, SALAS J J. Comparison between different numerical discretizations for a Darcy-Forchheimer model[J]. Electronic Transactions on Numerical Analysis ETNA, 2008, 34:187-203. [11] PARK E J. Mixed finite element methods for generalized Forchheimer flow in porous media[J]. Numerical Methods for Partial Differential Equations, 2005, 21(2):213-228. doi:10.1002/num.20035. [12] PAN H, RUI H X. Mixed element method for two-dimensional Darcy-Forchheimer model[J]. Journal of Scientific Computing, 2012, 52(3):563-587. doi:10.1007/s10915-011-9558-3. [13] PAN H, RUI H X. A mixed element method for Darcy-Forchheimer incompressible miscible displacement problem[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 264:1-11. doi:10.1016/j.cma.2013.05.011. [14] RUI H X, LIU W. A two-grid block-centered finite difference method for darcy: Forchheimer flow in porous media[J]. SIAM Journal on Numerical Analysis, 2015, 53(4):1941-1962. doi:10.1137/14097954x. [15] RUI H X, PAN H. A block-centered finite difference method for slightly compressible Darcy-Forchheimer flow in porous media[J]. Journal of Scientific Computing, 2017, 73(1):70-92. doi:10.1007/s10915-017-0406-y. [16] WANG Y, CHEN Y P. A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian-Lagrangian localized adjoint methods[J]. Journal of Mathematical Analysis and Applications, 2018, 468(1):406-422. doi:10.1016/j.jmaa.2018.08.021. [17] XU J C. A novel two-grid method for semilinear elliptic equations[J]. SIAM Journal on Scientific Computing, 1994, 15(1):231-237. doi:10.1137/0915016. [18] XU J C. Two-grid discretization techniques for linear and nonlinear PDEs[J]. SIAM Journal on Numerical Analysis, 1996, 33(5):1759-1777. doi:10.1137/s0036142992232949. [19] XU W W, LIANG D, RUI H X, et al. A multipoint flux mixed finite element method for Darcy-Forchheimer incompressible miscible displacement problem[J]. Journal of Scientific Computing, 2020, 82(1):1-20. doi:10.1007/s10915-019-01103-0. |
[1] | 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34. |
[2] | 张厚超, 朱维钧, 王俊俊. 非线性四阶双曲方程一个低阶混合元方法的超收敛和外推[J]. 山东大学学报(理学版), 2015, 50(12): 35-46. |
[3] | 樊明智, 王芬玲, 石东洋. 广义神经传播方程最低阶新混合元格式的高精度分析[J]. 山东大学学报(理学版), 2015, 50(08): 78-89. |
[4] | 马效培,孙同军. 多孔介质中不可压缩混溶驱动问题的一类特征积分平均非重叠型区域分解方法[J]. J4, 2012, 47(6): 49-56. |
[5] | 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28. |
[6] | 张建松1,牛海峰2. 多孔介质中可压缩混溶驱动问题的新型流线-扩散混合元方法[J]. J4, 2011, 46(12): 6-12. |
[7] | 李志涛. 变形介质中可混溶流体驱动问题的有限差分方法[J]. J4, 2010, 45(6): 50-55. |
[8] | 刘 伟,芮洪兴 . 一类半线性椭圆方程的二重网格差分算法[J]. J4, 2008, 43(4): 51-54 . |
[9] | 尹 哲, . 多孔介质可压缩可混溶驱动问题修正的特征对称有限体积方法[J]. J4, 2007, 42(8): 17-23 . |
[10] | 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 . |
[11] | 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 . |
|