《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (11): 93-96.doi: 10.6040/j.issn.1671-9352.0.2020.420
• • 上一篇
冯德成,蔺霞*,鲁雅莉
FENG De-cheng, LIN Xia*, LU Ya-li
摘要: 利用Fubini定理,得到了基于cY函数的弱(下)鞅的一类极大值不等式。
中图分类号:
[1] NEWMAN C M, WRIGHT A L. Associated random variables and martingale inequalities[J]. Z Wahrsch Verw Geb, 1982, 59(3):361-371. [2] CHRISTOFIDES T C. Maximal inequalities for demimartingales and a strong law of large numbers[J]. Stat Probab Lett, 2000, 50(4):357-363. [3] DAI Pingping, SHEN Yan, HU Shuhe, et al. Some results for demimartingales and N-demimartingales[J]. Journal of Inequalities and Applications, 2014, 2014(1):489-500. [4] CHRISTOFIDES T C. Maximal inequalities for N-demimartingales[J]. Arch Inequal Appl, 2003, 50(1):397-408. [5] WANG Jianfeng. Maximal inequalities for associated random variables and demimartingales[J]. Stat Probab Lett, 2004, 66(3):347-354. [6] WANG Xuejun, HU Shuhe. Maximal inequalities for demimartingales and their applications[J]. Sci China Ser A, 2009, 52(10):2207-2217. [7] WANG Xuejun, HU Shuhe, PRAKASA R B, et al. Maximal inequalities for N-demimartingales and strong law of large numbers[J]. Stat Probab Lett, 2011, 81(9):1348-1353. [8] AGBEKO N K. Concave function inequalities for sub-(super-)martingales[J]. Ann Univ Sci Budapest Sect Math, 1986, 29:9-17. [9] WANG Xuejun, HU Shuhe, YANG Wenzhi, et al. On some maximal inequalities for demimartingales and N-demimartingales based on concave Young functions[J]. Journal of Mathematical Analysis and Applications, 2012, 396(2):434-440. [10] 冯德成, 刘红蕊, 牛彩莉. 基于cY函数的F -弱鞅和条件N-弱鞅的最大值不等式[J]. 西南大学学报(自然科学版), 2015, 37(11):77-81. FENG Decheng, LIU Hongrui, NIU Caili. On some maximal inequalities for F -demimartingales and conditional N-demimartingales based on concave Young functions[J]. Journal of Southwest University(Natural Science), 2015, 37(11):77-81. |
[1] | 冯德成,张潇,周霖. 弱鞅的一类极小值不等式[J]. 山东大学学报(理学版), 2017, 52(8): 65-69. |
[2] | 冯德成,王晓艳,高玉峰. 基于Y函数的条件N-弱鞅的最大φ-不等式[J]. 山东大学学报(理学版), 2017, 52(2): 91-96. |
[3] | 龚小兵1,2. 弱鞅的Whittle型不等式及其应用[J]. J4, 2011, 46(9): 112-116. |
|