您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (3): 85-88.doi: 10.6040/j.issn.1671-9352.0.2020.102

• • 上一篇    

(An;Bn)同奇偶m-可图的充分条件

郭纪云1,2,李海燕2,郭锦2,蔡白光2*   

  1. 1.天津大学应用数学中心, 天津 300072;2.海南大学理学院, 海南 海口 570228
  • 发布日期:2022-03-15
  • 作者简介:郭纪云(1984— ),女,博士研究生,副教授,研究方向为图论、离散几何. E-mail:158238102@qq.com*通信作者简介:蔡白光(1979— ),男,硕士研究生,副教授,研究方向为图论、常微分方程. E-mail:37263607@qq.com
  • 基金资助:
    国家重点研发计划资助项目(2018YFA0704701);国家自然科学基金资助项目(11921001,11601108);海南省自然科学基金资助项目(121MS001)

A sufficient condition for (An;Bn) to be identical parity m-graphic

GUO Ji-yun1,2, LI Hai-yan2, GUO Jin2, CAI Bai-guang2*   

  1. 1. Center for Applied Mathematics, Tianjin University, Tianjin 300072, China;
    2. School of Science, Hainan University, Haikou 570228, Hainan, Chian
  • Published:2022-03-15

摘要: 设An={a1,a2,…,an}和Bn={b1,b2,…,bn}是2个非增非负整数序列,其中ai≤bi(i=1,2,…,n)。若An及Bn满足a1≥a2≥…≥an且ai=ai+1蕴含bi≥bi+1(i=1,2,…,n-1),则称An和Bn遵从良序。若对于每一个i=1,…,n,都有ai≡bi(mod 2)且存在n阶m-图G,使得ai≤dG(vi)≤bi及dG(vi)≡bi(mod 2),则称序列对(An;Bn)是同奇偶m-可图的,并称G为其一个实现。给出(An;Bn)同奇偶m-可图的一个充分条件,其中An和Bn遵从良序。

关键词: 度序列, 构造性方法, 同奇偶m-可图

Abstract: Let An={a1,a2,…,an} and Bn={b1,b1,…,bn} be two sequences of nonnegative integers with ai≤bi for i=1,2,…,n. If An and Bn satisfy a1≥a2≥…≥an and ai=ai+1 implies bi≥bi+1 for i=1,2,…,n-1, then An and Bn are said to be in good order. If ai≡bi(mod 2)for each i and there exists a m-graph G with vertices v1,…,vn such that ai≤dG(vi)≤bi and dG(vi)≡bi(mod 2)for each i, then (An;Bn) is said to be identical parity m-graphic, G is called a realization of the pair. A constructive method is performed to prove a sufficient condition for (An;Bn) to be identical parity m-graphic, where An and Bn are in good order.

Key words: degree sequences, constructive method, identical parity m-graphic

中图分类号: 

  • O157.5
[1] ERDÖS P, GALLAI T. Graphs with prescribed degrees of vertices[J]. Mat Lapok, 1960, 11:24-274.
[2] CAI Maochen, DENG Xiaotie, ZANG Wenan. Solution to a problem on degree sequences of graphs[J]. Discrete Mathematics, 2000, 219(1/2/3):253-257.
[3] GUO Jiyun, YIN Jianhua. A constructive extension of the characterization on potentially Ks, t-bigraphic pairs[J]. Discussiones Mathematicae Graph Theory, 2017, 37(1):251.
[4] LAI Chunhui, HU Lili. Potentially Km-G-graphical sequences: a survey[J]. Czechoslovak Mathematical Journal, 2009, 59(4):1059-1075.
[5] 李炯生, 尹建华. 极值图论与度序列[J]. 数学进展, 2004, 33(3):273-283. LI Jiongsheng, YIN Jianhua. Extremal graph theory and degree sequences[J]. Advances in Mathematics, 2004, 33(3):273-283.
[6] RAO S B. A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences[M] //Combinatorics and Graph Theory. Berlin: Springer, 1981: 417-440.
[7] GARG A, GOEL A, TRIPATHI A. Constructive extensions of two results on graphic sequences[J]. Discrete Applied Mathematics, 2011, 159(17):2170-2174.
[8] LOVÁSZ L. The factorization of graphs: II[J]. Acta Mathematica Academiae Scientiarum Hungaricae, 1972, 23(1/2):223-246.
[1] 张敏, 司建国. 推广后的第二类Feigenbaum函数方程的解的新构造性方法[J]. J4, 2011, 46(4): 34-36.
[2] 张敏1,王连池2. 第二类Feigenbaum函数方程的一些推广[J]. J4, 2010, 45(6): 56-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!