《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (5): 46-56.doi: 10.6040/j.issn.1671-9352.2.2020.018
• • 上一篇
伊华伟1,牛在森1,李晓会1,李波1,景荣2
YI Hua-wei1, NIU Zai-sen1, LI Xiao-hui1, LI Bo1, JING Rong2
摘要: 针对协同推荐算法面对托攻击时鲁棒性差的问题,提出一种融合随机森林和目标项目识别的鲁棒推荐算法。首先,基于卡方统计理论提取能够区分正常用户与攻击用户的有效特征。然后,训练随机森林分类器对攻击概貌进行第一阶段检测。接下来,通过识别目标项目对含有攻击概貌的类别做进一步检测,实现攻击概貌的第二阶段检测。最后,根据攻击概貌检测结果构建鲁棒推荐算法。实验结果表明,所提算法在保障推荐精度的前提下具有较强的鲁棒性。
中图分类号:
[1] XIAO Teng, SHEN Hong. Neural variational matrix factorization for collaborative filtering in recommendation systems[J]. Applied Intelligence, 2019, 49(6):3558-3569. [2] CHEN Li, CHEN Guanliang, WANG Feng. Recommender systems based on user reviews: the state of the art[J]. User Modeling and User-Adapted Interaction, 2015, 25(2):99-154. [3] GUNES I, KALELI C, BILGE A, et al. Shilling attacks against recommender systems: a comprehensive survey[J]. Artificial Intelligence Review, 2014, 42(4):767-799. [4] LEE J S, ZHU D. Shilling attack detection: a new approach for a trustworthy recommender system[J]. Informs Journal on Computing, 2012, 24(1):117-131. [5] MOBASHER B, BURKE R, SANDVIG JJ. Model-based collaborative filtering as a defense against profile injection attacks[C] //Proceedings of the 21st National Conference on Artificial Intelligence, Boston, [s.n.] : 2006: 1388-1393. [6] OMAHONY M, HURLEY N, KUSHMERICK N, et al. Collaborative recommendation: a robustness analysis[J]. ACM Transactions on Internet Technology, 2004, 4(4):344-377. [7] CHAD A W, BAMSHAD M, ROBIN B. Defending recommender systems: detection of profile injection attacks[J]. Service Oriented Computing and Applications, 2007, 1(3):157-170. [8] WILLIAMS C A, MOBASHER B, BURKE R, et al. Detecting profile injection attacks in collaborative filtering: a classification-based approach[C] //Proceedings of the 8th Knowledge Discovery on the Web International Conference on Advances in Web Mining and Web Usage Analysis. Berlin: Springer, 2007: 167-186. [9] 伍之昂,庄毅,王有权,等. 基于特征选择的推荐系统托攻击检测算法[J]. 电子学报, 2012, 40(8):1687-1693. WU Zhiang, ZHUANG Yi, WANG Youquan, et al. Shilling attack detection based on feature selection for recommendation systems[J]. Acta Electronica Sinica, 2012, 40(8):1687-1693. [10] 李文涛,高旻,李华,等. 一种基于流行度分类特征的托攻击检测算法[J]. 自动化学报, 2015, 41(9):1563-1576. LI Wentao, GAO Min, LI Hua, et al. An shilling attack detection algorithm based on popularity degree features[J]. Acta Automatica Sinica, 2015, 41(9):1563-1576. [11] ZHOU Quanqiang.Supervised approach for detecting average over popular items attack in collaborative recommender systems[J]. IET Information Security, 2016, 10(3):134-141. [12] HAO Yaojun, ZHANG Fuzhi, CHAO Jinbo. An ensemble detection method for shilling attacks based on features of automatic extraction[J]. China Communications, 2019, 16(8):130-146. [13] ZHANG Fuzhi, ZHANG Zening, ZHANG Peng, et al. UD-HMM: an unsupervised method for shilling attack detection based on hidden markov model and hierarchical clustering[J]. Knowledge-Based Systems, 2018, 148:146-166. [14] 李聪, 骆志刚. 基于数据非随机缺失机制的推荐系统托攻击探测[J]. 自动化学报, 2013, 39(10):1681-1690. LI Cong, LUO Zhigang. Detecting shilling attacks in recommender systems based on non-random-missing mechanism[J]. Acta Automatica Sinica, 2013, 39(10):1681-1690. [15] 周全强, 张付志. 基于仿生模式识别的用户概貌攻击集成检测方法[J]. 计算机研究与发展, 2014, 51(4):789-801. ZHOU Quanqiang, ZHANG Fuzhi. Ensemble approach for detecting user profile attacks based on bionic pattern recognition[J]. Journal of Computer Research and Development, 2014, 51(4):789-801. [16] ZHANG Fuzhi, LING Zhoujun, WANG Shilei. An unsupervised approach for detecting shilling attacks in collaborative recommender systems based on user rating behaviours[J]. IET Information Security, 2018, 13(3):174-187. [17] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37. [18] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. [19] YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization[C] //Proceedings of the Fourteenth International Conference on Machine Learning, San Francisco, [s.n.] : 1997:412-420. [20] DUNNING T. Accurate methods for the statistics of surprise and coincidence[J]. Computational Linguistics, 1993, 19(1):61-74. [21] 牛在森,伊华伟,李晓会,等. 融合层次聚类和粒子群优化的鲁棒推荐算法[J]. 小型微型计算机系统, 2020, 41(1):68-71. NIU Zaisen, YI Huawei, LI Xiaohui, et al. Robust recommendation algorithm combining hierarchical clustering and particle swarm optimization[J]. Journal of Chinese Computer Systems, 2020, 41(1):68-71. [22] MILLER BN, ALBERT I, LAM SK, et al. MovieLens unplugged: experiences with an occasionally connected recommender system[C] //Proceedings of the 8th International Conference on Intelligent User Interfaces, New York: ACM, 2003: 263-266. [23] RICCI F, ROKACH L, SHAPIRA B, et al. Recommender systems handbook[M]. Berlin: Springer, 2011: 145-186. [24] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874. [25] CHENG Z, HURLEY N. Robust collaborative recommendation by least trimmed squares matrix factorization[C] //Proceedings of the IEEE 2010 22nd International Conference on Tools with Artificial Intelligence(ICTAI). Arras:[s.n.] , 2010: 105-112. [26] XU Yuchen, LIU Zhen, ZHANG Fuzhi. Robust recommendation approach based on incremental clustering and matrix factorization [J]. Journal of Chinese Computer Systems, 2015, 36(4):689-695. [27] 赵明,闫寒,曹高峰,等. 融合用户信任度和相似度的基于核心用户抽取的鲁棒性推荐算法[J]. 电子与信息学报, 2019, 41(1):180-186. ZHAO Ming, YAN Han, CAO Gaofeng, et al. Robust recommendation algorithm based on core user extraction with user trust and similarity[J]. Journal of Electronics & Information Technology, 2019, 41(1):180-186. |
[1] | 徐炜娜,张广乐,李仕红,陈园园,李强,杨涛,许明敏,乔宁,张良云. 基于随机森林算法识别基因间长非编码RNA[J]. 《山东大学学报(理学版)》, 2019, 54(3): 85-92, 101. |
[2] | 李润川,昝红英,申圣亚,毕银龙,张中军. 基于多特征融合的垃圾短信识别[J]. 山东大学学报(理学版), 2017, 52(7): 73-79. |
[3] | 岳猛,吴志军,姜军. 云计算中基于可用带宽欧氏距离的LDoS攻击检测方法[J]. 山东大学学报(理学版), 2016, 51(9): 92-100. |
[4] | 周先存, 黎明曦, 李瑞霞, 徐明鹃, 凌海波. 多点协作复制攻击检测研究[J]. 山东大学学报(理学版), 2015, 50(07): 54-65. |
[5] | 刘烃, 赵宇辰, 刘杨, 孙亚楠. 基于报警数据融合的智能电网攻击检测方法[J]. 山东大学学报(理学版), 2014, 49(09): 35-40. |
[6] | 许传轲 陈月辉 赵亚欧. 基于改进伪氨基酸组成的蛋白质相互作用预测[J]. J4, 2009, 44(9): 17-21. |
[7] | 张华伟,王明文,甘丽新 . 基于随机森林的文本分类模型研究[J]. J4, 2006, 41(3): 139-143 . |
|