您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (5): 92-96.doi: 10.6040/j.issn.1671-9352.0.2020.398

• • 上一篇    

一类均匀拟阵的二阶圈图连通性及哈密顿性

邓梓健1,刘彬1,火博丰1,2*   

  1. 1.青海师范大学数学与统计学院, 西宁 青海 810008;2.青海省物联网重点实验室, 西宁 青海 810008
  • 发布日期:2022-05-27
  • 作者简介:邓梓健(1996— ), 男, 硕士研究生, 研究方向运筹学与控制论、图论与组合优化. E-mail:1329205716@qq.com*通信作者简介:火博丰(1967— ), 女, 博士, 教授, 研究方向运筹学与控制论、图论与组合优化. E-mail:124356595@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11961055,11801296);青海省科技厅资助项目(2018-Z-718)

Connectivity and Hamiltonian properties of second order circuit graphs of a class of uniform matroid

DENG Zi-Jian1, LIU Bin1, HUO Bo-feng1,2*   

  1. 1. College of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China;
    2. Internet of Things Key Laboratory, Xining 810008, Qinghai, China
  • Published:2022-05-27

摘要: 对均匀拟阵U2,n的二阶圈图的连通性及哈密顿性进行研究,得到了U2,n的二阶圈图是3(n-3)-正则图并给出相关证明, 而且得到其点连通度和边连通度都等于最小度的连通性质介绍了U2,n的二阶圈图的哈密顿性,证明其是哈密顿连通的。

关键词: 均匀拟阵, 二阶圈图, 连通度, 最小度, 哈密顿连通

Abstract: The connectivity and Hamiltonian properties of the second order circuit graph of the uniform matroid U2,n have been investigated. The second order circuit graph of U2,n is 3(n-3)-regular graph and the connectivity and edge-connectivity of its are equal to the minimum degree. Furthermore, Hamiltonian properties of the second order circuit graph of U2,n is introduced and it is Hamiltonian connected.

Key words: uniform matroid, second order circuit graph, connectivity, minimum degree, Hamiltonian connected

中图分类号: 

  • O157.5
[1] WHITNEY H. On the abstract properties of linear dependence[J]. Amer J Math, 1935, 57(3):509-533.
[2] 李萍. 拟阵圈图的一些性质[D]. 济南: 山东大学, 2010. LI Ping. Some properties of circuit graphs of matroids[D]. Jinan: Shandong University, 2010.
[3] FAN H, LIU G Z. Properties of Hamilton cycles of circuit graphs of matroids[J]. Frontiers of Mathematics in China, 2013, 8(4):801-809.
[4] LI P, LIU G Z. Hamilton cycles in circuit graphs of matroids[J]. Computers & Mathematics With Applications, 2008, 55(4):654-659.
[5] LIU G Z, LI P. Paths in circuit graphs of matroids[J]. Theoretical Computer Science, 2008, 396(1/2/3):258-263.
[6] LI P, LIU G Z. The connectivity and minimum degree of circuit graphs of matroids[J]. Acta Mathematica Sinica, English Series, 2010, 26(2):353-360.
[7] LI P, LIU G Z. Cycles in circuit graphs of matroids[J]. Graphs and Combinatorics, 2007, 23(4):425-431.
[8] 赖虹建. 拟阵论[M]. 北京: 高等教育出版社, 2002. LAI Hongjian. Matroid Theory[M]. Beijing: Higher Education Press, 2002.
[1] 蔡建生1,葛连升2. 图的独立数与分数一致性[J]. 山东大学学报(理学版), 2014, 49(04): 41-43.
[2] 王万禹,孟吉翔*,赵雪冰. 线图的限制性邻域连通度[J]. J4, 2012, 47(2): 56-59.
[3] 肖海强1,2,张昭1*. λ3,q-连通图的刻画[J]. J4, 2010, 45(6): 27-30.
[4] 刘树利. 图的孤立韧度与分数(g, f)-因子的存在性[J]. J4, 2010, 45(10): 31-34.
[5] 祁忠斌1,叶东2,张和平2. 正则图的环边连通性和环连通性之间的关系[J]. J4, 2009, 44(12): 22-24.
[6] 杨朝霞 . 某些5-连通图中最长圈上的可收缩边[J]. J4, 2008, 43(6): 12-14 .
[7] 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111-113 .
[8] 王纪辉, . 关于近似二部图边覆盖染色的一个充分条件[J]. J4, 2006, 41(1): 21-23 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!