《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (6): 1-7.doi: 10.6040/j.issn.1671-9352.0.2021.520
• •
刘惠丽,杨涛*
LIU Hui-li, YANG Tao*
摘要: 设A=⊕p∈G Ap是群G上的乘子Hopf T-余代数,考虑其交叉左A-G模, 证明了交叉左A-G模范畴是一个幺半范畴且乘子R={Rp,q∈M(Ap⊗Aq)}p,q∈G是A上的拟三角结构当且仅当A的交叉左A-G模范畴是辫子幺半范畴,辫子幺半范畴的辫子由R给出。
中图分类号:
[1] DRINFRLD V G. Quantum groups[J]. Journal of Soviet Mathematics, 1988, 41(2):898-915. [2] TURAEV V. Crossed group-categories[J]. Arabian Journal for Science and Engineering, 2008, 33(2C):483-503. [3] VIRELIZIER A. Hopf group-coalgebras[J]. Journal of Pure and Applied Algebra, 2002, 171(1):75-122. [4] DELVAUX L, VAN DAELE A, WANG Shuanhong. Quasitriangular(G-cograded)multiplier Hopf algebras[J]. Journal of Algebra, 2005, 289(2):484-514. [5] ABD EL-HAFEZ A T, DELVAUX L, VAN DAELE A. Group-cograded multiplier Hopf(*-)algebra[J]. Algebras and Representation Theory, 2007, 10(1):77-95. [6] ZHU Meiling, CHEN Huixiang, LI Libin. Quasitriangular Hopf group coalgebras and braided monoidal categories[J]. Arabian Journal for Science and Engineering, 2011, 36(6):1063-1070. [7] VAN DAELE A. Multiplier Hopf algebras[J]. Transaction of the American Mathematical Society, 1994, 342(2):917-932. [8] VAN DAELE A. An algebraic framework for group duality[J]. Advance in Mathematics, 1998, 140(2):323-366. [9] VAN DAELE A. Tools for working with multiplier Hopf algebras[J]. Arabian Journal for Science and Engineering, 2008, 33(2C):505-527. [10] YANG Tao, WANG Shuanhong. Constructing new braided T-categories over regular multiplier Hopf algebras[J]. Communications in Algebra, 2011, 39(9):3073-3089. [11] YANG Tao, ZHOU Xuan, ZHU Haixin. A class of quasitriangular group-cograded multiplier Hopf algebras[J]. Glasgow Mathematical Journal, 2020, 62(1):43-57. [12] DELVAUX L, VAN DAELE A. The Drinfeld double for group-cograded multiplier Hopf algebras[J]. Algebras and Representation Theory, 2007, 10(3):197-221. |
[1] | 张涛. Yetter-Drinfeld拟余模范畴上的Hopf拟余模[J]. 《山东大学学报(理学版)》, 2020, 55(4): 58-66. |
[2] | 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15. |
|