您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (6): 1-7.doi: 10.6040/j.issn.1671-9352.0.2021.520

• •    

乘子Hopf T-余代数的交叉表示范畴

刘惠丽,杨涛*   

  1. 南京农业大学理学院, 江苏 南京 210095
  • 发布日期:2022-06-10
  • 作者简介:刘惠丽(1995— ), 女, 硕士研究生, 研究方向为Hopf代数. E-mail:710980586@qq.com*通信作者简介:杨涛(1984— ), 男, 副教授, 硕士生导师, 研究方向为Hopf代数. E-mail:tao.yang@njau.edu.cn
  • 基金资助:
    中国博士后基金面上资助项目(2019M651764)

Crossed representation categories of multiplier Hopf T-coalgebras

LIU Hui-li, YANG Tao*   

  1. College of Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Published:2022-06-10

摘要: 设A=⊕p∈G Ap是群G上的乘子Hopf T-余代数,考虑其交叉左A-G模, 证明了交叉左A-G模范畴是一个幺半范畴且乘子R={Rp,q∈M(Ap⊗Aq)}p,q∈G是A上的拟三角结构当且仅当A的交叉左A-G模范畴是辫子幺半范畴,辫子幺半范畴的辫子由R给出。

关键词: 乘子Hopf T-余代数, 拟三角, 辫子, 交叉表示范畴

Abstract: Let A=⊕p∈GAp be a multiplier Hopf T-coalgebra over a group of G. Considering its crossed left A-G-modules, and show the crossed left A-G-module category is a monoidal category, and that a family of multipliers R={Rp,q∈M(Ap⊗Aq)}p,q∈G is a quasitriangular structure on A if and only if the crossed left A-G-module category over A is a braided monoidal category with the braiding c defined by R.

Key words: multiplier Hopf T-coalgebra, quasitriangular, braiding, crossed representation category

中图分类号: 

  • O153.3
[1] DRINFRLD V G. Quantum groups[J]. Journal of Soviet Mathematics, 1988, 41(2):898-915.
[2] TURAEV V. Crossed group-categories[J]. Arabian Journal for Science and Engineering, 2008, 33(2C):483-503.
[3] VIRELIZIER A. Hopf group-coalgebras[J]. Journal of Pure and Applied Algebra, 2002, 171(1):75-122.
[4] DELVAUX L, VAN DAELE A, WANG Shuanhong. Quasitriangular(G-cograded)multiplier Hopf algebras[J]. Journal of Algebra, 2005, 289(2):484-514.
[5] ABD EL-HAFEZ A T, DELVAUX L, VAN DAELE A. Group-cograded multiplier Hopf(*-)algebra[J]. Algebras and Representation Theory, 2007, 10(1):77-95.
[6] ZHU Meiling, CHEN Huixiang, LI Libin. Quasitriangular Hopf group coalgebras and braided monoidal categories[J]. Arabian Journal for Science and Engineering, 2011, 36(6):1063-1070.
[7] VAN DAELE A. Multiplier Hopf algebras[J]. Transaction of the American Mathematical Society, 1994, 342(2):917-932.
[8] VAN DAELE A. An algebraic framework for group duality[J]. Advance in Mathematics, 1998, 140(2):323-366.
[9] VAN DAELE A. Tools for working with multiplier Hopf algebras[J]. Arabian Journal for Science and Engineering, 2008, 33(2C):505-527.
[10] YANG Tao, WANG Shuanhong. Constructing new braided T-categories over regular multiplier Hopf algebras[J]. Communications in Algebra, 2011, 39(9):3073-3089.
[11] YANG Tao, ZHOU Xuan, ZHU Haixin. A class of quasitriangular group-cograded multiplier Hopf algebras[J]. Glasgow Mathematical Journal, 2020, 62(1):43-57.
[12] DELVAUX L, VAN DAELE A. The Drinfeld double for group-cograded multiplier Hopf algebras[J]. Algebras and Representation Theory, 2007, 10(3):197-221.
[1] 张涛. Yetter-Drinfeld拟余模范畴上的Hopf拟余模[J]. 《山东大学学报(理学版)》, 2020, 55(4): 58-66.
[2] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!