《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (8): 21-38.doi: 10.6040/j.issn.1671-9352.7.2021.069
李心雨1,2,范辉1,2*,刘惊雷3
LI Xin-yu1,2, FAN Hui1,2 *, LIU Jing-lei3
摘要: 聚类是数据挖掘和机器学习领域的重要研究内容,一般会先基于数据样本构建相似图,再基于相似图将样本划分到相应的类中。但是真实的数据经常被损坏,导致学习的相似图不准确,从而直接影响聚类结果。为解决这些问题,提出一种面向鲁棒聚类的自适应图调节和低秩矩阵分解的方法,该方法的核心思想是:将原始数据X分解为纯净数据D和噪声数据S,再基于纯净数据构造拉普拉斯矩阵并进行自适应图调节。随后,给出一个联合学习框架,将数据分离、自适应图正则、噪声消除和低秩矩阵分解集成到一个目标函数中。利用增广拉格朗日乘子法分别更新变量。最后,在理论上证明算法的收敛性并进行实验。实验结果表明所提出的方法与现有一些方法相比有一定优越性。
中图分类号:
[1] HUANG Shudong, KANG Zhao, TSANG I. Auto-weighted multiview clustering via kernelized graph learning[J]. Pattern Recognition, 2019, 88(1):174-184. [2] CHEN Mulin, WANG Qi, LI Xuelong. Adaptive projected matrix factorization method for data clustering[J]. Neuro Computing, 2018, 306(1):182-188. [3] KANG Zhao, PENG Chong, CHENG Qiang. Clustering with adaptive manifold structure learning[C] //2017 IEEE 33rd International Conference on Data Engineering(ICDE). San Diego: IEEE, 2017: 79-82. [4] HUANG Shudong, REN Yazhou, XU Zenglin. Robust multiview data clustering with multi-view capped-norm k-means[J]. Neurocomputing, 2018, 311(1):197-208. [5] HUANG Shudong, KANG Zhao, XU Zenglin. Self-weighted multiview clustering with soft capped norm[J]. Knowledge-Based Systems, 2018, 158(1):1-8. [6] ALVAREZ-MEZA A M, LEE J A, VERLEYSEN M. Kernel-based dimensionality reduction using Renyis α-entropy measures of similarity[J]. Neurocomputing, 2017, 222(26):36-46. [7] HAN I K, LUO Z, HUANG J Z. Variable weighting in fuzzy k-means clustering to determine the number of clusters[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(9):1838-1853. [8] BICKEL P, CHOI D, CHANG X. Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels[J]. Annals of Statistics, 2012, 41(4):1922-1943. [9] DING C H Q, LI T, JORDAN M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(1):45-55. [10] SINHA K. K-means clustering using random matrix sparsification[C] //DY J, KRAUSE A. Proceedings of the 35th International Conference on Machine Learning. Stockholm: PMLR, 2018: 4684-4692. [11] YE Xulun, ZHAO Jieyu, CHEN Yu, et al. Bayesian adversarial spectral clustering with unknown cluster number[J]. IEEE Transactions on Image Processing, 2020, 29(9):8506-8518. [12] LONG Mingsheng, WANG Jianmin, DING Guiguang. Adaptation regularization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5):1076-1089. [13] HUANG Shudong, ZHAO Peng, REN Yazhou, et al. Self-paced and soft-weighted nonnegative matrix factorization for data representation[J]. Knowledge-Based Systems, 2019, 164(1):29-37. [14] YANG Yang, SHEN Fumin, HUANG Zi, et al. Discrete nonnegative spectral clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(9):1834-1845. [15] KANG Zhao, PAN Haiqi, HOI S. Robust graph learning from noisy data[J]. IEEE Transactions on Cybernetics, 2020, 50(5):1833-1843. [16] NIE Feiping, WANG Zheng, WANG Rong. Towards robust discriminative projections learning via non-greedy l2,1-norm MinMax[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6):2086-2100. [17] MA Xiaoke, SUN Penggang, WANG Yu. Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 496(1):121-136. [18] ZHANG Lefei, ZHANG Qian, DU Bo, et al. Adaptive manifold regularized matrix factorization for data clustering[C] //Twenty-sixth International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 3399-3405. [19] LIU Xinwang, WANG Lei, ZHANG Jian, et al. Global and local structure preservation for feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 25(6):1083-1095. [20] HE Xiang, WANG Qi, LI Xuelong. Robust adaptive graph regularized nonnegative matrix factorization[J]. IEEE Access, 2019, 7(9):83101-83110. [21] ZHAO Yongqiang, YANG Jingxiang. Hyperspectral image denoising via sparse representation and low-rank constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1):296-308. [22] LIN Baihong, TAO Xiaoming, XU Mai, et al. Bayesian hyperspectral and multispectral image fusions via double matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5666-5678. [23] WAN Minghua, LAI Zhihui, MING Zhong, et al. An improve face representation and recognition method based on graph regularized non-negative matrix factorization[J]. Multimedia Tools and Applications, 2019, 78(15):22109-22126. [24] ZHANG Z, HAWKINS C. Variational Bayesian inference for robust streaming tensor factorization and completion[C] //2018 IEEE International Conference on Data Mining. Singapore: IEEE, 2018: 1446-1451. [25] WU Siqi, YU Bin. Local identifiability of L1-minimization dictionary learning: a sufficient and almost necessary condition[J]. Journal of Machine Learning Research, 2018, 18(168):1-56. [26] ZHANG Kai, ZHANG Sheng, LIU Jun, et al. Greedy orthogonal pivoting algorithm for non-negative matrix factorization[C] //CHAUDHURI K, SALAKHUTDINOV R.Proceedings of the 36 th International Conference on Machine Learning. Long Beach: ICML, 2019: 7493-7501. [27] KAILKHURA B, THIAGARAJAN J J, RASTOGI C, et al. A spectral approach for the design of experiments: design, analysis and algorithms[J]. Journal of Machine Learning Research, 2018, 19(34):1-46. [28] LEI J, ROGERS R J. Combined Lagrangian multiplier and penalty function finite element technique for elastic impact analysis[J]. Computers & Structures,1988, 30(6):1219-1229. [29] TOH K C, YUN S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3):615-640. [30] YANG Junfeng. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization[J]. Mathematics of Computation, 2012, 82(281):301-329. [31] HUANG Jin, NIE Feiping, HUANG Heng, et al. Robust manifold non-negative matrix factorization[J]. ACM Transactions on Knowledge Discovery from Data, 2014, 8(3):11. [32] 史加荣,周水生,郑秀云. 多线性鲁棒主成分分析[J]. 电子学报,2014,42(8):1480-1486. SHI Jiarong, ZHOU Shuisheng, ZHEN Xiuyun. Multilinear robust principal component analysis[J]. Acta Electronica Sinica, 2014, 42(8):1480-1486. [33] HARTIGAN J, WONG M A. K-means clustering algorithm[J]. Applied Statistics, 2013, 28(1):100-108. [34] XU H, CARAMANIS C, SANGHAVI S. Robust PCA via outlier pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(5):3047-3064. [35] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791. [36] CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560. [37] HUANG Jin, NIE Feiping, HUANG Heng, et al. Robust manifold non-negative matrix factorization[J]. ACM Transactions on Knowledge Discovery from Data, 2014, 8(3):1-21. [38] PENG Chong, KANG Zhao, HU Yunhong. Robust graph regularized nonnegative matrix factorization for clustering[J]. ACM Transactions on Knowledge Discovery from Data, 2017, 11(3):1-30. [39] YIN Ming, XIE Shengli, WU Zongze, et al. Subspace clustering via learning an adaptive low-rank graph[J]. IEEE Transactions on Image Processing, 2018, 27(8):3716-3728. [40] HE Fang, NIE Feiping, WANG Rong. Fast semisupervised learning with bipartite graph for large-scale data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(2):626-638. [41] LI Xuelong, CHEN Mulin, WANG Qi. Adaptive consistency propagation nethod for graph clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(4):797-802. |
[1] | 及歆荣,侯翠琴,侯义斌,赵斌. 基于筛选机制的L1核学习机分布式训练方法[J]. 山东大学学报(理学版), 2016, 51(9): 137-144. |
|