《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (8): 95-102.doi: 10.6040/j.issn.1671-9352.0.2021.220
李春平,桑彦彬*
LI Chun-ping, SANG Yan-bin*
摘要: 考虑一类具有凹凸非线性项和变号权函数的分数阶p-q-Laplacian方程组,借助于Nehari流形和Ekeland变分原理,证明当参数(λ, μ)属于Rn的某个集合时,该方程组至少存在两个非平凡解。
中图分类号:
[1] ZHEN Maoding, HE Jinchun, XU Haoyun. Critical system involving fractional Laplacian[J]. Communications on Pure and Applied Analysis, 2019, 18(1):237-253. [2] LEHRER R, MAIA L A, SQUASSINA M. On fractional p-Laplacian problems with weight [J]. Differential Integral Equations, 2015, 28(1/2):15-28. [3] ZHEN Maoding, HE Jinchun, XU Haoyun, et al. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent[J]. Discrete and Continuous Dynamical Systems, 2019, 39(11):6523-6539. [4] PUCCI P, XIANG M Q, ZHANG B L. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in Rn[J]. Calculus of Variations and Partial Differential Equations, 2015, 54(3):2785-2806. [5] 顾秋婷, 沈自飞. 带变号势函数的分数阶p-Laplacian方程弱解的存在性[J]. 浙江师范大学学报(自然科学版), 2018, 41(1):12-18. GU Qiuting, SHEN Zifei. Existence of weak solutions for a fractional p-Laplacian equation with sign-changing potential[J]. Journal of Zhejiang Normal University(Natural Sciences), 2018, 41(1):12-18. [6] GOYAL S, SREENADH K. Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function[J]. Advances in Nonlinear Analysis, 2015, 4(1):37-58. [7] PERERA K, SQUASSINA M, YANG Y. A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators[J]. Advances in Nonlinear Analysis, 2014, 4(1):13-23. [8] XIANG M Q, ZHANG B L, RADULESCU V. Superlinear Schrödinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent[J]. Advances in Nonlinear Analysis, 2020, 9(1):690-709. [9] 张金国, 焦红英, 刘邱云. 分数阶p(x)-Laplace算子方程的多解性[J]. 数学杂志, 2020, 40(1):81-89. ZHANG Jinguo, JIAO Hongying, LIU Qiuyun. Multiplicity of solutions for fractional p(x)-Laplace equation[J]. Journal of Mathematics, 2020, 40(1):81-89. [10] SERVADEI R, VALDINOCI E.Variational methods for non-local operators of elliptic type[J]. Discrete and Continuous Dynamical Systems, 2013, 33(5):2105-2137. [11] ZHEN Maoding, ZHANG Binlin. The Nehari manifold for fractional p-Laplacian system involving concave-convex nonlinearities and sign-changing weight functions[J]. Complex Variables and Elliptic Equations, 2021, 66(10):1731-1754. [12] CHEN Wenjing, DENG Shengbing. The Nehari manifold for a fractional p-Laplacian system involving concave-convex nonlinearities[J]. Nonlinear Analysis Real World Applications, 2016, 27:80-92. [13] HE X, SQUASSINA M, ZOU W. The Nehari manifold for fractional systems involving critical nonlin-earrities[J]. Communications on Pure and Applied Analysis, 2016, 15(4):1285-1308. [14] 李瑞. 一类非局部p-q-Laplace方程非负解的存在性[J]. 郑州大学学报(理学版), 2016, 48(2):5-10. LI Rui. Existence of nonnegative solution to a class of p-q-Laplace Equation[J]. Journal of Zhengzhou University(Natural Science), 2016, 48(2):5-10. [15] 徐冬, 邓志颖. 含Hardy-Sobolev临界指数项的p-q型椭圆边值问题的非平凡解[J]. 应用数学, 2018, 31(2):269-280. XU Dong, DENG Zhiying. On nontrivial solutions of p-q Laplacian type elliptic boundary value problems involving Hardy-Sobolev critical exponents[J]. Mathematica Applicata, 2018, 31(2):269-280. [16] XIANG M, ZHANG B, FERRARA M. Existence of solutions for Kirchhoff type problem involving thenon-local fractional p-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2015, 424(2):1021-1041. |
[1] | 张昊,雒志学,郑秀娟. 基于尺度结构的周期三种群系统的最优收获[J]. 《山东大学学报(理学版)》, 2022, 57(1): 77-88. |
[2] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[3] | 孙国伟, 买阿丽. 一类二阶非线性差分方程同宿解的多解性[J]. 山东大学学报(理学版), 2015, 50(05): 51-54. |
[4] | 李娟. 带临界指数的奇异椭圆方程极小解的存在性[J]. J4, 2011, 46(2): 29-33. |
[5] | 史敬涛 . 状态约束下完全耦合的正倒向随机控制系统的最大值原理[J]. J4, 2007, 42(1): 44-48 . |
|