《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 109-120.doi: 10.6040/j.issn.1671-9352.0.2021.256
庄媛媛,张克勇
ZHUANG Yuan-yuan, ZHANG Ke-yong
摘要: 通过SEIR模型对公共卫生事件爆发后应急救援物资需求进行预测,以应急物资需求缺货损失最小及物资分配总距离最短为目标构建优化模型。为确保分配的精确性,每周期对模型参数根据实时数据进行调整,并通过应急物资分配案例验证了模型的科学性与合理性。结果表明:该方法能有效解决重大公共卫生事件下动态需求下应急物资分配问题,为解决突发公共卫生事件下应急物资配置提供了新的思路。
中图分类号:
[1] 蔡洁,贾浩源,王珂.基于SEIR模型对武汉市新型冠状病毒肺炎疫情发展趋势预测[J].山东医药,2020,60(6):1-4. CAI Jie, JIA Haoyuan, WANG Ke. Prediction of COVID-19 epidemic trend in Wuhan based on SEIR model[J]. Shandong Medicine, 2020, 60(6):1-4. [2] YE Yong, LIU Nan, HU Guiping, et al. Scheduling algorithm based on follow-up sharing character for post-event response resource distribution in large-scal disasters[J]. Journal of Systems Science & Systems Engineering, 2016, 25(1):77-101. [3] CHEN Yingxin, TADIKAMALLA P R, SHANG J, et al. Supply allocation: bi-level programming and differential evolution algorithm for natural disaster relief[J]. Cluster Comput, 2020, 23(1):203-217. [4] 冯春,廖海燕,田小强,等.多情景模式下应急资源精益配置模型与算法[J].中国安全科学学报,2018,28(6):185-191. FENG Chun, LIAO Haiyan, TIAN Xiaoqiang, et al. Lean allocation model and algorithm of emergency resources in multi-scenario mode[J]. China Safety Science Journal, 2018, 28(6):185-191. [5] 董银红,郑琪,李龙.考虑供应风险的多源应急物资采购双层规划模型[J].中国管理科学, 2019,29(11):170-178. DONG Yinhong, ZHENG Qi, LI Long. Consider supply multi-source emergency supplies procurement bi-level programming model of risk[J]. China Management Science, 2019, 29(11):170-178. [6] PRADHANANGA R, MUTLU F, POKHAREL S, et al. An integrated resource allocation and distribution model for pre-disaster planning[J]. Comput Ind Eng, 2016, 91:229-238. [7] MING L, WEI Y. A new perspective for scheduling the medical resource order and distribution[C] //Control Conference. Dalian: IEEE, 2017. [8] 李永义, 周正华, 李伯权, 等. 基于区间数可能度的地震应急物资分配优化方法[J]. 应用基础与工程科学学报, 2015, 23(3):637-644. LI Yongyi, ZHOU Zhenghua, LI Boquan, et al. Earthquake emergency materials distribution optimization method based on interval number probability[J]. Journal of Basic Science and Engineering, 2015, 23(3):637-644. [9] SHEU J B. An emergency logistics distribution approach for quick response to urgent relief demand in disasters[J]. Transportation Research Part E: Logistics & Transportation Review, 2007, 43(6):687-709. [10] 任斌,朱昌锋,钟校.基于前景理论的应急物资需求动态调整模型[J].中国安全科学学报,2018,28(3):179-184. REN Bin, ZHU Changfeng, ZHONG Xiao. Dynamic adjustment model of emergency material demand based on prospect theory[J]. China Safety Science Journal, 2018, 28(3):179-184. [11] 胡忠君,刘艳秋,李佳.基于改进GM(1,1)的洪涝灾害应急物资动态需求预测[J].系统仿真学报,2019,31(4):702-709. HU Zhongjun, LIU Yanqiu, LI Jia. Dynamic demand prediction of flood disaster emergency materials based on improved GM(1,1)[J]. Journal of System Simulation, 2019, 31(4):702-709. [12] 张磊.面向地震灾情时序变化的应急救援物资需求动态预测研究[J].灾害学,2018,33(3):161-164. ZHANG Lei. Research on dynamic prediction of demand for emergency relief materials for earthquake disaster time series change[J]. Disaster Science, 2018(3):161-164. [13] 张斌,陈建国,吴金生,等.台风灾害应急物资需求预测模型[J].清华大学学报(自然科学版),2012,52(7):891-895. ZHANG Bin, CHEN Jianguo, WU Jinsheng, et al. Forecasting model of emergency materials demand for typhoon disaster[J]. Journal of Tsinghua University(Science & Technology), 2012, 52(7):891-895. [14] RAINISCH G, UNDURRAGA E A, CHOWELL G. A dynamic modeling tool for estimating healthcare demand from the COVID19 epidemic and evaluating population-wide interventions[J]. International Journal of Infectious Diseases, 2020, 96:376-383. [15] LIU Ming, NING Jing, DU Yuri, et al. Modelling the evolution trajectory of COVID-19 in Wuhan, China: experience and suggestions[J]. Public Health, 2020, 183(1):76-80. [16] VERMA V R, SAINI A, GANDHI S, et al. Capacity-need gap in hospital resources for varying mitigation and containment strategies in India in the face of COVID-19 pandemic[J]. Infectious Disease Modelling, 2020, 5:608-621. [17] WEISSMAN G E, CRANE-DROESCH A, CHIVERS C, et al. Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic[J]. Annals of Internal Medicine, 2020, 173(1):21-28. [18] SHEU J B. Dynamic relief-demand management for emergency logistics operations under large-scale disasters[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(1):1-17. [19] KONSTANTINOS N, SUSHIL P, ANDREAS S, et al. Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions[J]. European Journal of Operational Research, 2021, 290(1):99-115. [20] HE Yuxuan, LIU Nan. Methodology of emergency medical logistics for public health emergencies[J]. Transportation Research Part E, 2015, 79:178-200. [21] EKICI A, KESKINOCAK P, SWANN J L. Modeling influenza pandemic and planning food distribution[J]. Manufacturing & Service Operations Management, 2014, 16(1):11-27. [22] 王新平,王海燕.多疫区多周期应急物资协同优化调度[J].系统工程理论与实践,2012,32(2):283-291. WANG Xinping, WANG Haiyan. Coordinated and optimized dispatching of emergency supplies in multiple epidemic areas[J]. Systems Engineering-Theory & Practice, 2012, 32(2):283-291. [23] 范如国,王奕博,罗明,等.基于SEIR的新冠肺炎传播模型及拐点预测分析[J].电子科技大学学报,2020,49(3):369-374. FAN Ruguo, WANG Yibo, LUO Ming, et al. COVID-19 transmission model and inflection point prediction based on SEIR[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):369-374. [24] 余玮. 基于实时数据的医疗物资订购与配送动态协调优化[D].南京:南京理工大学,2018. YU Wei. Dynamic coordination and optimization of medical supplies ordering and distribution based on real-time data[D]. Nanjing: Nanjing University of Science and Technology, 2018. |
[1] | 张克勇,吕美琳,姚建明,王昊. 物流外包满意度提升路径——基于模糊集定性比较[J]. 《山东大学学报(理学版)》, 2019, 54(3): 119-126. |
|