《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 29-39.doi: 10.6040/j.issn.1671-9352.0.2022.352
• • 上一篇
屈金铮1,李金1,2*,苏晓宁1
QU Jin-zheng1, LI Jin1,2*, SU Xiao-ning1
摘要: 提出了重心Lagrange插值配点法求解一类非线性伪抛物方程。首先,介绍了重心Lagrange插值并给出了微分矩阵表达式。其次,构造了求解非线性伪抛物方程的直接线性化迭代格式、部分线性化迭代格式、Newton线性化迭代格式。再次,未知函数和初边值条件利用重心Lagrange插值函数来近似,利用配点法得到离散方程,获得了方程的矩阵表达式。最后,数值算例表明,重心Lagrange插值配点法具有高精度和高效率的优点。
中图分类号:
[1] 李宁,郭艳,秦卫,等. 一类热流密码体制非线性模型的有限元算法[J]. 南京邮电学院学报(自然科学版),2001,21(3):43-45,57. LI Ning, GUO Yan, QIN Wei, et al. A finite element algorithm used for nonlinear heat flow cryptosystems[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science), 2001, 21(3):43-45,57. [2] 高常忠,涂慧,宋惠元. 一类热流密码体制模型及计算机模拟结果分析[J]. 信息工程大学学报,2004,5(4):28-31. GAO Changzhong, TU Hui, SONG Huiyuan. A class of heat flow cryptosystems and analysis of results of computer simulations[J]. Journal of Information Enqineering University, 2004, 5(4):28-31. [3] 陈雪鸿,江成顺. 热流密码体制的一种非齐次半线性模型的加,解密实现[C] //中国密码学学术会议. 上海:上海交通大学,2004:160-165. CHEN Xuehong, JIANG Chengshun. An realization of encryption and decryption in the semi-linear case of heat flow cryptsystems[C] //Chinese Association for Cryptologic Research. Shanghai:Shanghai Jiao Tong University, 2004: 160-165. [4] 刘霖雯. 一类Sobolev方程的伪谱解法及其在热流密码体制中的应用[D]. 郑州:解放军信息工程大学,2006. LIU Linwen. Fourier pseudo-spectral method for some Sobolev equation and its applications in heat flow cryptosystem[D]. Zhengzhou: PLA Information Engineering University, 2006. [5] 曹杨. 一类伪抛物型方程解的渐进行为及其在图像处理中的应用[D]. 长春:吉林大学,2010. CAO Yang. Asymptotic behavior of a class of pseudo-parabolic equations with applications to image processing[D]. Changchun: Jilin University, 2010. [6] 李伟,宋惠元. 伪抛物型方程组的比较原理及其应用[J]. 信息工程大学学报,2002,3(1):35-39. LI Wei, SONG Huiyuan. The comparative theory of the pseudoparabolic equation system and its application[J]. Jounal of Information Engineering University, 2002, 3(1):35-39. [7] TING T W. A cooling process according to two-temperature theory of heat conduction[J]. Journal of Mathematical Analysis and Applications, 1974, 45(1):23-31. [8] SHIVAMOGGI B K. A symmetric regularized long-wave equation for shallow water waves[J]. Physics of Fluids, 1986, 29(3):890-891. [9] TAYLOR W J. Method of Lagrangian curvilinear interpolation[J]. Journal of Research of the National Bureau of Standards, 1945, 35(2):151-155. [10] BERRUT J P,TREFETHEN L N. Barycentric Lagrange interpolation[J]. SIAM Review, 2004, 46(3):501-517. [11] 虎晓燕,韩惠丽. 重心插值配点法求解分数阶Fredholm积分方程[J]. 郑州大学学报(理学版),2017,49(1):17-23. HU Xiaoyan, HAN Huili. Barycentric interpolation collocation method for solving Fredholm integral equation of fractional order[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(1):17-23. [12] 王兆清,李淑萍,唐炳涛. 一维重心型插值:公式、算法和应用[J]. 山东建筑大学学报,2007,22(5):448-453. WANG Zhaoqing, LI Shuping, TANG Bingtao. Formulations, algorithms and applications on barycentric interpolation in 1D[J]. Journal of Shandong Jianzhu University, 2007, 22(5):448-453. [13] WANG Zhaoqing, JIANG Jian,TANG Bingtao, et al. Numerical solution of bending problem for elliptical plate using differentiation matrix method based on barycentric Lagrange interpolation[J]. Applied Mechanics and Materials, 2014, 638/639/640:1720-1724. [14] WANG Zhaoqing, TANG Bingtao, ZHENG Wei. A barycentric interpolation collocation method for Darcy flow in two-dimension[J]. Applied Mechanics and Materials, 2014, 684:3-10. [15] 李树忱,王兆清,袁超. 极坐标系下弹性问题的重心插值配点法[J]. 中南大学学报(自然科学版),2013,44(5):2031-2040. LI Shuchen, WANG Zhaoqing, YUAN Chao. Barycentric interpolation collocation method for solving elastic problems[J]. Journal of Central South University(Science and Technology), 2013, 44(5):2031-2040. [16] 王兆清,李淑萍,唐炳涛. 圆环变形及屈曲的重心插值配点法分析[J]. 机械强度,2009,31(2):245-249. WANG Zhaoqing, LI Shuping, TANG Bingtao. Deformation and buckling analysis of ring by barycentric interpolation collocation method[J]. Journal of Mechanical Strength, 2009, 31(2):245-249. [17] 赵岳月,王兆清,李金. 自由边界问题的重心插值迭代配点法研究[J]. 山东建筑大学学报,2018,33(2):29-32. ZHAO Yueyue, WANG Zhaoqing, LI Jin. Study of barycentric interpolation iteration collocation method for free boundary problem[J]. Journal of Shandong Jianzhu University, 2018, 33(2):29-32. [18] 李树忱,王兆清. 高精度无网格重心插值配点法:算法、程序及工程应用[M]. 北京:科学出版社,2012:168-179. LI Shuchen, WANG Zhaoqing. Meshless barycentric interpolation collocation method with high precision-algorithms: programs & applications in engineering[M]. Beijing: Science Press, 2012: 168-179. [19] 刘婷. 求解电报方程的重心Lagrange插值配点法[D]. 银川:宁夏大学,2016. LIU Ting. Barycentric Lagrange interpolation collocation method for solving telegraph equation[D]. Yinchuan: Ningxia University, 2016. [20] LI Jin, SU Xiaoning, QU Jinzheng. Linear barycentric rational collocation method for solving telegraph equation[J]. Mathematical Methods in the Applied Sciences, 2021, 44(14):11720-11737. [21] 虎晓燕. 分数阶积分微分方程的无网格重心插值配点法[D]. 银川:宁夏大学,2016. HU Xiaoyan. Meshfree barycentric interpolation collocation method for solving integral-differential equations of fractional order[D]. Yinchuan: Ningxia University, 2016. [22] LI Jin, CHENG Yongling. Numerical solution of Volterra integro-differential equations with linear barycentric rational method[J]. International Journal of Applied and Computational Mathematics, 2020, 6(5):1-12. [23] LI Jin, CHENG Yongling. Linear barycentric rational collocation method for solving heat conduction equation[J]. Numerical Methods for Partial Differential Equations, 2020, 37(1):533-545. [24] LI Jin, SANG Yu. Linear barycentric rational collocation method for beam force vibration equation[J]. Shock and Vibration, 2021, 2021(2):1-11. [25] 李淑萍. 基于重心型插值的数值计算方法[J]. 山东科学,2010,23(4):13-16. LI Shuping. A survey of numerical method based on barycentric interpolation[J]. Shandong Science, 2010, 23(4):13-16. |
[1] | 王志刚 秦新强 党发宁 苏李君. 楔形基无网格法解的存在惟一性[J]. J4, 2010, 45(2): 44-49. |
[2] | 张青洁,王文洽 . 色散方程高阶差分格式的并行迭代法[J]. J4, 2008, 43(2): 8-11 . |
|