您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (5): 63-75.doi: 10.6040/j.issn.1671-9352.0.2022.130

• • 上一篇    

基于改进粒子群优化算法的信号检测及故障诊断

张金珂,张建刚*   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2023-05-15
  • 作者简介:张金珂(1996— ),女,硕士研究生,研究方向为非线性动力学. E-mail:zhangjinke_math@126.com*通信作者简介:张建刚(1978— ),男,博士,教授,研究方向为非线性动力学. E-mail:zhangjg7715776@126.com
  • 基金资助:
    国家自然科学基金资助项目(61863022,11962012)

Signal detection and fault diagnosis based on improved particle swarm optimization algorithm

ZHANG Jinke, ZHANG Jiangang*   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2023-05-15

摘要: 研究了一种分段双稳态随机共振系统,使用改进的粒子群优化(particle swarm optimization, PSO)算法对双稳系统的参数进行优化,将其应用于弱信号检测以及轴承的故障诊断。首先,引入分段的势函数,对系统的输出信噪比进行理论推导,从势阱中粒子的跃迁角度讨论分析了系统各参数对平均首次通过时间以及信噪比的影响,并借此对系统进行评价;其次,利用随机权重粒子群优化算法和自适应权值粒子群算法,分别与随机共振相结合,以输出信号的信噪比作为评价指标,对系统参数进行优化调节,并比较2种粒子群优化算法的改进算法;最后,将改进的粒子群优化算法应用于故障诊断,通过仿真研究和实验验证,对比几种算法的输出效果,评价了随机权重粒子群优化算法的有效性和优越性。

关键词: 分段势函数, 随机权重粒子群优化算法, 弱信号检测, 故障诊断

Abstract: A piecewise bistable stochastic resonance system is investigated, and the parameters of the bistable system are optimized by using the improved particle swarm optimization(PSO)algorithm, which is applied to weak signal detection and bearing fault diagnosis. First, the piecewise potential function is introduced, and the output signal-to-noise ratio of the system is derived theoretically. Next, the effect of the average first passage time and signal-to-noise ratio on the system parameters from the transition of particles in the potential wells are discussed and analyzed, and the model is evaluated. Second, by combining the random weight particle swarm optimization algorithm and adaptive weight particle swarm optimization algorithm with stochastic resonance, and taking the signal-to-noise ratio of the output signal as the evaluation index, the system parameters are optimized and adjusted. The improved algorithms of the two particle swarm optimization algorithms are compared. Finally, the improved particle swarm optimization algorithm is applied to fault diagnosis. The effectiveness and superiority of the random weight particle swarm optimization algorithm are verified by comparing the output effects of several algorithms.

Key words: piecewise potential function, stochastic weighted particle swarm optimization algorithm, weak signal detection, fault diagnosis

中图分类号: 

  • O193
[1] 吴正毅.测试技术与测试信号处理[M].北京:清华大学出版社,1991: 186-238. WU Zhengyi. Test technology and test signal processing[M]. Beijing: Tsinghua University Press, 1991: 186-238.
[2] 蔡剑华,胡惟文,王先春.基于高阶统计量的大地电磁数据处理与仿真[J].中南大学学报(自然科学版),2010,41(4):1556-1560. CAI Jianhua, HU Weiwen, WANG Xianchun. Magnetotelluric data processing and simulation based on higher-order statistics[J]. Journal of Central South University(Natural Science), 2010, 41(4):1556-1560.
[3] 郑安总.奇异值分解在微弱信号检测中的应用[D].天津:天津大学,2014. ZHENG Anzong. The application of singular value decomposition in weak signal detection[D]. Tianjin: Tianjin University, 2014.
[4] ROBERTO B, ALFONSO S, ANGELO V. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981,14(11):L453-L457.
[5] FAUVE S, HESLOT F. Stochastic resonance in a bistable system[J]. Physics Letters A, 1983, 97(1/2):5-7.
[6] HE Qingbo, WANG Jun, LIU Yongbin, et al. Multiscale noise tuning of stochastic resonance for enhanced fault diagnosis in rotating machines[J]. Mechanical Systems and Signal Processing, 2012, 28(2):443-457.
[7] LI Huafeng, BAO Ronghao, XU Bohou, et al. Intrawell stochastic resonance of bistable system[J]. Journal of Sound and Vibration, 2004, 272(1):155-167.
[8] TAN Jiyong, CHEN Xuefeng, WANG Junying, et al. Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009, 23(3):811-822.
[9] CALISTO H, CLERC M G. A new perspective on stochastic resonance in monostable systems[J]. New Journal of Physics, 2010, 12(11):113027.
[10] JHA R K, CHOUHAN R. Dynamic stochastic resonance-based grayscale logo extraction in hybrid SVD-DCT domain[J]. Journal of the Frankin Institute, 2014, 351(5):2938-2965.
[11] 朱利民,钟秉林,贾民平.振动信号短时分析方法及在机械故障诊断中的应用[J].振动工程学报,2000,13(3):400-405. ZHU Limin, ZHONG Binglin, JIA Minping. Short-time analysis of vibration signal and its application in mechanical fault diagnosis[J]. Journal of Vibration Engineering, 2000, 13(3):400-405.
[12] 林京,屈梁生.基于连续小波变换的信号检测技术与故障诊断[J].机械工程学报,2000,36(12):95-100 LIN Jing, QU Liangsheng. Signal detection technology and fault diagnosis based on continuous wavelet transform[J]. Journal of Mechanical Engineering, 2000, 36(12):95-100.
[13] 冯志鹏,褚福磊.行星齿轮箱齿轮分布式故障振动频谱特征[J].中国电机工程学报,2013,33(2):118-125. FENG Zhipeng, CHU Fulei. Vibration spectrum characteristics of distributed gear faults in planetary gearboxes[J]. Proceedings of the CSEE, 2013, 33(2):118-125.
[14] 康健.基于欠阻尼随机共振势模型的微弱信号检测方法及其应用[D].包头:内蒙古科技大学,2020. KANG Jian. Weak signal detection method based on underdamped stochastic resonance potential model and application[D]. Baotou: Inner Mongolia University of Science & Technology, 2020.
[15] HAN Dongying, SHI Peiming. Study on the mean first-passage time and stochastic resonance of a multi-stable system with colored correlated noises[J]. Chinese Journal of Physics, 2021, 69:98-107.
[16] LI Mengdi, SHI Peiming, ZHANG Wenyue, et al. A novel underdamped continuous unsaturation bistable stochastic resonance method and its application[J]. Chaos, Solitons & Fractals, 2021, 151:111228.
[17] KIM H, TAI W, PARKER J, et al. Self-tuning stochastic resonance energy harvesting for rotating systems under modulated noise and its application to smart tires[J]. Mechanical Systems and Signal Processing, 2019, 122:769-785.
[18] FU Yuxuan, KANG Yanmei, LIU Ruonan. Novel bearing fault diagnosis algorithm based on the method of moments for stochastic resonant systems[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:6500610.
[19] MA Jianpeng, LI Chengwei, ZHANG Guangzhu. Adaptive stochastic resonance-based processing of weak magnetic slippage signals of bearings[J]. Entropy, 2022, 24(2):147.
[20] HUANG Dawen, YANG Jianhua, ZHOU Dengji, et al. Novel adaptive search method for bearing fault frequency using stochastic resonance quantified by amplitude-domain index[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(1):109-121.
[21] HUANG Dawen, YANG Jianhua, ZHOU Dengji, et al. Recovering an unknown signal completely submerged in strong noise by a new stochastic resonance method[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 66:156-166.
[22] XU Pengfei, JIN Yanfei. Stochastic resonance in an asymmetric tristable system driven by correlated noises[J]. Applied Mathematical Modelling, 2020, 77:408-425.
[23] ZHANG Gang, LIU Xiaoman, ZHANG Tianqi. Two-dimensional tri-stable stochastic resonance system and its application in bearing fault detection[J]. Physica A: Statistical Mechanics and its Applications, 2022: 126855.
[24] LU Siliang, HE Qingbo, ZHANG Haibin, et al. Enhanced rotating machine fault diagnosis based on time-delayed feedback stochastic resonance[J]. Journal of Vibration and Acoustics, 2015, 137(5):051008.
[25] 贺利芳,朱伟,张天骐.分段非对称随机共振系统微弱信号检测[J].振动与冲击,2022,41(5):114-122. HE Lifang, ZHU Wei, ZHANG Tianqi. Detection of weak signals in piecewise asymmetric stochastic resonance system[J]. Journal of Vibration and Shock, 2022, 41(5):114-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!