《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (6): 84-91.doi: 10.6040/j.issn.1671-9352.0.2022.414
摘要:
主要研究了一类由抛物-抛物型Keller-Segel方程组与不可压Navier-Stokes方程组耦合而成的趋化流体模型。利用加权Chemin-Lerner范数、Besov空间插值理论和Fourier微局部分析,建立了该模型在临界Besov空间中一类大解的整体存在性。
中图分类号:
1 |
TUVAL I , CISNEROS L , DOMBROWSKI C , et al. Bacterial swimming and oxygen transport near contact lines[J]. Proceedings of the National Academy of Sciences, 2005, 102 (7): 2277- 2282.
doi: 10.1073/pnas.0406724102 |
2 |
LORZ A . Coupled chemotaxis fluid model[J]. Mathematical Models and Methods in Applied Sciences, 2010, 20 (6): 987- 1004.
doi: 10.1142/S0218202510004507 |
3 |
DUAN Renjun , LORZ A , MARKOWICH P . Global solutions to the coupled chemotaxis-fluid equations[J]. Communications in Partial Differential Equations, 2010, 35 (9): 1635- 1673.
doi: 10.1080/03605302.2010.497199 |
4 |
CHAE M , KANG K , LEE J . Existence of smooth solutions to coupled chemotaxis-fluid equations[J]. Discrete Continuous Dynamical Systems, 2013, 33 (6): 2271- 2297.
doi: 10.3934/dcds.2013.33.2271 |
5 |
ZHANG Qian . Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces[J]. Nonlinear Analysis: Real World Applications, 2014, 17, 89- 100.
doi: 10.1016/j.nonrwa.2013.10.008 |
6 |
HE Haibin , ZHANG Qian . Global existence of weak solutions for the 3D chemotaxis-Navier-Stokes equations[J]. Nonlinear Analysis: Real World Applications, 2017, 35, 336- 349.
doi: 10.1016/j.nonrwa.2016.11.006 |
7 |
ZHANG Qian , ZHENG Xiaoxin . Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier-Stokes equations with logistic source[J]. Journal of Differential Equations, 2021, 274, 576- 612.
doi: 10.1016/j.jde.2020.10.024 |
8 | ZHANG Qian , ZHANG Yehua . Global well-posedness for the 3D incompressible Keller-Segel-Navier-Stokes equations[J]. Zeitschrift für Angewandte Mathematik und Physik, 2019, 70 (5): 1- 28. |
9 |
CHOE H J , LKHAGVASUREN B , YANG M . Wellposedness of the Keller-Segel-Navier-Stokes equations in the critical Besov spaces[J]. Communications on Pure Applied Analysis, 2015, 14 (6): 2453- 2464.
doi: 10.3934/cpaa.2015.14.2453 |
10 |
ZHAO Jihong , ZHOU Jianjun . Temporal decay in negative Besov spaces for the 3D coupled chemotaxis-fluid equations[J]. Nonlinear Analysis: Real World Applications, 2018, 42, 160- 179.
doi: 10.1016/j.nonrwa.2018.01.001 |
11 |
ZHAO Jihong . Global existence in critical Besov spaces for the coupled chemotaxis-fluid equations[J]. Journal of Mathematical Analysis and Applications, 2018, 465 (2): 1010- 1024.
doi: 10.1016/j.jmaa.2018.05.041 |
12 |
YANG Minghua . Global solutions to Keller-Segel-Navier-Stokes equations with a class of large initial data in critical Besov spaces[J]. Mathematical Methods in the Applied Sciences, 2017, 40 (18): 7425- 7437.
doi: 10.1002/mma.4538 |
13 |
YANG Minghua , FU Zunwei , SUN Jinyi . Global solutions to chemotaxis-Navier-Stokes equations in critical Besov spaces[J]. Discrete Continuous Dynamical Systems-B, 2018, 23 (8): 3427- 3460.
doi: 10.3934/dcdsb.2018284 |
14 |
BONY J M . Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[J]. Annales Scientifiques de l'école Normale Supérieure, 1981, 14 (2): 209- 246.
doi: 10.24033/asens.1404 |
15 | BAHOURI H , CHEMIN J Y , DANCHIN R . Fourier analysis and nonlinear partial differential equations[M]. Berlin: Springer, 2011. |
16 |
DANCHIN R . Local theory in critical spaces for compressible viscous and heat-conductive gases[J]. Communications in Partial Differential Equations, 2001, 26 (7-8): 1183- 1233.
doi: 10.1081/PDE-100106132 |
17 | 赵继红, 蔡中博, 罗永轲. 三维趋化流体耦合系统整体解的最优衰减估计[J]. 数学年刊: A辑, 2022, 43 (1): 17- 36. |
ZHAO Jihong , CAI Zhongbo , LUO Yongke . Optimal decay estimates of global solutions for the 3D coupled chemotaxis-fluid system[J]. Chinese Annals of Mathematics: Series A, 2022, 43 (1): 17- 36. |
[1] | 曹凯凯. 各向异性密度函数的小波估计[J]. 《山东大学学报(理学版)》, 2019, 54(6): 99-105. |
[2] | 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94. |
[3] | 李 静,张玉海 . 矩阵方程X+A*X-pA=I当p>0时的准最大解的条件数[J]. J4, 2007, 42(12): 90-94 . |
[4] | 李静,张玉海,宋慧敏 . 矩阵方程X+A*X-pA=I(0<p<1)的最大解的条件数[J]. J4, 2006, 41(5): 68-72 . |
|