《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (8): 1-5.doi: 10.6040/j.issn.1671-9352.0.2022.555
• • 下一篇
摘要:
设G是有限幂零群N通过有限阿贝尔群A的半直积, 其中(|N|, |A|)=1, 在这篇注记中, 证明了在某些条件下G的整群环ZG的正规化挠单位与G中的某一元在有理群代数QG中共轭。
中图分类号:
1 | SEHGAL S K . Units in integral group rings[M]. Harlow: Longman Scientific and Technical Press, 1993. |
2 | WEISS A . Torsion units in integral group rings[J]. Journal Fur Die Reine Und Angewandte Mathematik, 1991, 415, 175- 187. |
3 |
SEHGAL S K , WEISS A . Torsion units in integral group rings of some metabelian groups[J]. Journal of Algebra, 1986, 103 (2): 490- 499.
doi: 10.1016/0021-8693(86)90149-3 |
4 |
MARCINIAK Z , RITTER J , SEHGAL S K . Torsion units in integral group rings of some metabelian groups Ⅱ[J]. Journal of Number Theory, 1987, 25 (3): 340- 352.
doi: 10.1016/0022-314X(87)90037-0 |
5 | JURIAANS S O , MILIES C P . Units of integral group rings of Frobenius groups[J]. Journal of Group Theory, 2000, 3, 277- 284. |
6 |
HERTWECK M . On the torsion units of some integral group rings[J]. Algebra Colloquium, 2006, 13 (2): 329- 348.
doi: 10.1142/S1005386706000290 |
7 | BOVDI V , HÄFERT C , KIMMERLE W . On the first Zassenhaus conjecture for integral group rings[J]. Publicationes Mathematicae-Debrecen, 2004, 65 (3/4): 291- 303. |
8 |
HERTWECK M . Torsion units in integral group rings of certain metabelian groups[J]. Proceedings of the Edinburgh Mathematical Society, 2008, 51, 363- 385.
doi: 10.1017/S0013091505000039 |
9 |
BÄCHLE A , KIMMERLE W , SERRANO M . On the first Zassenhaus conjecture and direct products[J]. Canadian Journal of Mathematics, 2020, 72 (3): 602- 624.
doi: 10.4153/S0008414X18000044 |
10 |
BÄCHLE A , HERMAN A , KONOVALOV A , et al. The status of the Zassenhaus conjecture for small groups[J]. Experimental Mathematics, 2018, 27 (4): 431- 436.
doi: 10.1080/10586458.2017.1306814 |
11 |
BÄCHLE A , KIMMERLE W . On torsion subgroups in integral group rings of finite groups[J]. Journal of Algebra, 2011, 326, 34- 46.
doi: 10.1016/j.jalgebra.2010.05.026 |
12 |
CAICEDO M , MARGOLIS L , DEL RÍO A . Zassenhaus conjecture for cyclic-by-Abelian groups[J]. Journal of the London Mathematical Society, 2013, 88 (1): 65- 78.
doi: 10.1112/jlms/jdt002 |
13 | 海进科, 郭继东. Zassenhaus猜想的一个注记[J]. 数学学报, 2018, 61 (3): 441- 446. |
HAI Jinke , GUO Jidong . A note on Zassenhaus̓s conjecture[J]. Acta Mathematica Sinica, Chinese Series, 2018, 61 (3): 441- 446. | |
14 |
EISELE F , MARGOLIS L . A counterexample to the first Zassenhaus conjecture[J]. Advances in Mathematics, 2018, 339, 599- 641.
doi: 10.1016/j.aim.2018.10.004 |
15 | ROSE J S . A course on group theory[M]. Cambridge: Cambridge University Press, 1978. |
[1] | 李正兴, 杨舒先. 关于有限亚循环2-群全形的整群环的一个注记[J]. 山东大学学报(理学版), 2015, 50(10): 40-42. |
[2] | 郭继东1,海进科2*. 关于类保持自同构的一个注记[J]. 山东大学学报(理学版), 2014, 49(06): 46-49. |
[3] | 海进科,李正兴,杜贵青. 关于有限群的类保持自同构的一个注记[J]. J4, 2010, 45(12): 28-30. |
|