山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (10): 40-42.doi: 10.6040/j.issn.1671-9352.0.2014.374
李正兴, 杨舒先
LI Zheng-xing, YANG Shu-xian
摘要: 设G是有限亚循环2-群,记/HolG为G的全形。证明了在整群环ZHolG中下面等式成立:NU(ZHolG)(G)=G·Z(ZHolG)。
中图分类号:
[1] SEHGAL S K. Units in integral group rings [M]. New York: Longman Scientific & Technical, 1996. [2] HERTWECK M. Class-preserving automorphisms of finite groups [J]. J Algebra, 2001, 241 (1):1-26. [3] HERTWECK M, JESPERS E. Class-preserving automorphisms and the normalizer property for Blackburn groups [J]. J Group Theory, 2009, 12(1):157-169. [4] LI Yuanlin. The normalizer property of a metabelian group in its integral group ring [J]. J Algebra, 2002, 256(2):343-351. [5] LI Yuanlin, SEHGAL S K, PARMENTER M M. On the nomalizer property for integral group rings[J]. Comm Algebra, 1999, 27(9):4217-4223. [6] LI Zhengxing, HAI Jinke. The normalizer property for integral group rings of finite solvable T-groups[J]. J Group Theory, 2012, 15(2):237-243. [7] LI Zhengxing, HAI Jinke. Coleman automorphisms of holomorphs of finite abelian groups[J]. Acta Mathematica Sinica, 2014, 30(9):1549-1554. [8] LI Zhengxing, HAI Jinke. Coleman automorphisms of standard wreath products of nilpotent groups by groups with prescribed Sylow 2-subgroups [J]. Journal of Algebra and its Applications, 2014, 13(5):1350156.1-1350156.9. [9] KURZWEIL H, STELLMACHER B. The theory of finite groups: an introduction [M]. New York: Springer-Verlag, 2003. [10] MAZUROV D. Finite groups with metacyclic Sylow 2-subgroups [J]. Sibirskii Matematicheskii Zhurnal, 1967, 8:966-982. [11] COLEMAN D B. On the modular group ring of a p-group [J]. Proc Amer Math Soc, 1964, 15:511-514. |
[1] | 郭继东1,海进科2*. 关于类保持自同构的一个注记[J]. 山东大学学报(理学版), 2014, 49(06): 46-49. |
[2] | 海进科,李正兴,杜贵青. 关于有限群的类保持自同构的一个注记[J]. J4, 2010, 45(12): 28-30. |
|