《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 161-166.doi: 10.6040/j.issn.1671-9352.0.2022.351
摘要:
基于Z2pm上的二阶广义割圆构造一类新型的量子可同步码,此类纠错码具有最优的纠正信息块同步错误的能力,其可同步能力总是其上界2pm。此外,这类码字对由量子噪声引起的比特错误和相位错误也具有一定的纠错能力。最后,给出一些具有最优块可同步能力的量子可同步码。
中图分类号:
1 |
SHOR P W . Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 1995, 52 (4): R2493.
doi: 10.1103/PhysRevA.52.R2493 |
2 |
STEANE A . Multiple-particle interference and quantum error correction[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1996, 452 (1954): 2551- 2577.
doi: 10.1098/rspa.1996.0136 |
3 |
CALDERBANK A R , SHOR P W . Good quantum error-correcting codes exist[J]. Physical Review A, 1996, 54 (2): 1098.
doi: 10.1103/PhysRevA.54.1098 |
4 | NIELSEN M A , CHUANG I L . Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2011. |
5 | LIDAR D A , BRUN T A . Quantum error correction[M]. Cambridge: Cambridge University Press, 2013. |
6 |
FUJIWARA Y , TONCHEV V D , WONG T W H . Algebraic techniques in designing quantum synchronizable codes[J]. Physical Review A, 2013, 88 (1): 012318.
doi: 10.1103/PhysRevA.88.012318 |
7 |
FUJIWARA Y . Block synchronization for quantum information[J]. Physical Review A, 2013, 87 (2): 022344.
doi: 10.1103/PhysRevA.87.022344 |
8 | XIE Yixuan, YUAN Jinhong, FUJIWARA Y. Quantum synchronizable codes from quadratic residue codes and their supercodes[C] //2014 IEEE Information Theory Workshop(ITW 2014). New York: IEEE, 2014: 172-176. |
9 |
XIE Yixuan , YANG Lei , YUAN Jinhong . q-Ary chain-containing quantum sychronizable codes[J]. IEEE Communications Letters, 2016, 20 (3): 414- 417.
doi: 10.1109/LCOMM.2015.2512261 |
10 |
LUO Lan , MA Zhi . Non-binary quantum synchronizable codes from repeated-root cyclic codes[J]. IEEE Transactions on Information Theory, 2018, 64 (3): 1461- 1470.
doi: 10.1109/TIT.2018.2795479 |
11 | GUENDA K , LA GUARDIA G G , GULLIVER T A . Algebraic quantum synchronizable codes[J]. Journal of Applied Mathematics and Computing, 2017, 55 (1/2): 393- 407. |
12 |
LI Lanqiang , ZHU Shixin , LIU Li . Quantum synchronizable codes from the cyclotomy of order four[J]. IEEE Communications Letters, 2019, 23 (1): 12- 15.
doi: 10.1109/LCOMM.2018.2877989 |
13 |
LUO Lan , MA Zhi , LIN Dongdai . Two new families of quantum synchronizable codes[J]. Quantum Information Processing, 2019, 18 (9): 277.
doi: 10.1007/s11128-019-2389-0 |
14 | DU Chao , MA Zhi , LUO Lan , et al. On a family of quantum synchronizable codes based on the (λ(u+v)|u-v) construction[J]. IEEE Access, 2019, 8 (99): 8449- 8458. |
15 |
LIU Hualu , LIU Xiusheng . Quantum synchronizable codes from finite rings[J]. Quantum Information Processing, 2021, 20 (3): 125.
doi: 10.1007/s11128-021-03058-4 |
16 |
SHI Xiaoping , YUE Qin , HUANG Xinmei . Quantum synchronizable codes from the Whiteman's generalized cyclotomy[J]. Cryptography and Communications, 2021, 13 (5): 727- 739.
doi: 10.1007/s12095-021-00501-2 |
17 | DINH H Q , NGUYEN B T , TANSUCHAT R . Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm[J]. Applicable Algebra in Engineering, Communication and Computing, 2021, 32 (6): 1- 34. |
18 | LING San , XING Chaoping . Coding theory: a first course[M]. Cambridge: Cambridge University Press, 2004. |
19 |
ZHANG Jingwei , ZHAO Changan , MA Xiao . Linear complexity of generalized cyclotomic binary sequences of length 2pm[J]. Applicable Algebra in Engineering, Communication and Computing, 2010, 21 (2): 93- 108.
doi: 10.1007/s00200-009-0116-2 |
20 |
DING Cunsheng , HELLSETH T . New generalized cyclotomy and its applications[J]. Finite Fields and Their Applications, 1998, 4 (2): 140- 166.
doi: 10.1006/ffta.1998.0207 |
21 | Burton D M . Elementary number theory[M]. 4th ed New York: McGraw-Hill Companies, 1997. |
22 | WU Yansheng , YUE Qin , FAN Shuqin . Self-reciprocal and self-conjugate-reciprocal irreducible factors of xn-λ and their applications[J]. Finite Fields and Their Applications, 2020, 63 (10): 101648. |
[1] | 王涛,闫统江,孙玉花,刘骞. 基于Reed-Solomon码的量子可同步码[J]. 《山东大学学报(理学版)》, 2022, 57(3): 58-61. |
[2] | 高健,曹永林. 有限域上2-生成元拟扭转码的构造[J]. J4, 2012, 47(10): 31-33. |
|