您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 161-166.doi: 10.6040/j.issn.1671-9352.0.2022.351

•   • 上一篇    下一篇

基于Z2pm上二阶广义割圆的量子可同步码

孙诗文1(),牟丹阳2   

  1. 1. 中国石油大学(华东)理学院,山东 青岛 266580
    2. 中国石油大学(华东)经济管理学院,山东 青岛 266580
  • 收稿日期:2022-06-23 出版日期:2023-12-20 发布日期:2023-12-19
  • 作者简介:孙诗文(1998—),女,硕士研究生,研究方向为代数编码学. E-mail:winner_ssw@163.com
  • 基金资助:
    中国石油大学(华东)研究生创新工程项目(YCX2021137)

Quantum synchronizable codes from generalized cyclotomy of order two over Z2pm

Shiwen SUN1(),Danyang MOU2   

  1. 1. College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
    2. School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, Shandong, China
  • Received:2022-06-23 Online:2023-12-20 Published:2023-12-19

摘要:

基于Z2pm上的二阶广义割圆构造一类新型的量子可同步码,此类纠错码具有最优的纠正信息块同步错误的能力,其可同步能力总是其上界2pm。此外,这类码字对由量子噪声引起的比特错误和相位错误也具有一定的纠错能力。最后,给出一些具有最优块可同步能力的量子可同步码。

关键词: 量子可同步码, 循环码, 对偶包含码, 分圆陪集

Abstract:

A new family of quantum synchronizable codes from generalized cyclotomy of order two over Z2pm are constructed whose synchronization capabilities always reach the upper bound 2pm. In addition, this kind of codes also have ability to correct bit errors and phase errors caused by quantum noise. Finally, some quantum synchronizable codes with optimal capabilities of block synchronization are presented.

Key words: quantum synchronizable codes, cyclic codes, dual-containing codes, cyclotomic cosets

中图分类号: 

  • O236.2

表1

具有最优块同步能力的量子可同步码"

p m n r δ 块同步能力最优的量子可同步码
3 3 54 37 3 [[54+cl+cr, 30]]37
3 4 162 73 3 [[162+cl+cr, 90]]73
11 2 242 23 5 [[242+cl+cr, 198]]23
11 3 2 662 5 55 [[2 662+cl+cr, 2 398]]5
19 1 38 7 3 [[38+cl+cr, 30]]7
19 2 722 11 3 [[722+cl+cr, 570]]11
67 1 134 37 11 [[134+cl+cr, 126]]37
1 SHOR P W . Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 1995, 52 (4): R2493.
doi: 10.1103/PhysRevA.52.R2493
2 STEANE A . Multiple-particle interference and quantum error correction[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1996, 452 (1954): 2551- 2577.
doi: 10.1098/rspa.1996.0136
3 CALDERBANK A R , SHOR P W . Good quantum error-correcting codes exist[J]. Physical Review A, 1996, 54 (2): 1098.
doi: 10.1103/PhysRevA.54.1098
4 NIELSEN M A , CHUANG I L . Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2011.
5 LIDAR D A , BRUN T A . Quantum error correction[M]. Cambridge: Cambridge University Press, 2013.
6 FUJIWARA Y , TONCHEV V D , WONG T W H . Algebraic techniques in designing quantum synchronizable codes[J]. Physical Review A, 2013, 88 (1): 012318.
doi: 10.1103/PhysRevA.88.012318
7 FUJIWARA Y . Block synchronization for quantum information[J]. Physical Review A, 2013, 87 (2): 022344.
doi: 10.1103/PhysRevA.87.022344
8 XIE Yixuan, YUAN Jinhong, FUJIWARA Y. Quantum synchronizable codes from quadratic residue codes and their supercodes[C] //2014 IEEE Information Theory Workshop(ITW 2014). New York: IEEE, 2014: 172-176.
9 XIE Yixuan , YANG Lei , YUAN Jinhong . q-Ary chain-containing quantum sychronizable codes[J]. IEEE Communications Letters, 2016, 20 (3): 414- 417.
doi: 10.1109/LCOMM.2015.2512261
10 LUO Lan , MA Zhi . Non-binary quantum synchronizable codes from repeated-root cyclic codes[J]. IEEE Transactions on Information Theory, 2018, 64 (3): 1461- 1470.
doi: 10.1109/TIT.2018.2795479
11 GUENDA K , LA GUARDIA G G , GULLIVER T A . Algebraic quantum synchronizable codes[J]. Journal of Applied Mathematics and Computing, 2017, 55 (1/2): 393- 407.
12 LI Lanqiang , ZHU Shixin , LIU Li . Quantum synchronizable codes from the cyclotomy of order four[J]. IEEE Communications Letters, 2019, 23 (1): 12- 15.
doi: 10.1109/LCOMM.2018.2877989
13 LUO Lan , MA Zhi , LIN Dongdai . Two new families of quantum synchronizable codes[J]. Quantum Information Processing, 2019, 18 (9): 277.
doi: 10.1007/s11128-019-2389-0
14 DU Chao , MA Zhi , LUO Lan , et al. On a family of quantum synchronizable codes based on the (λ(u+v)|uv) construction[J]. IEEE Access, 2019, 8 (99): 8449- 8458.
15 LIU Hualu , LIU Xiusheng . Quantum synchronizable codes from finite rings[J]. Quantum Information Processing, 2021, 20 (3): 125.
doi: 10.1007/s11128-021-03058-4
16 SHI Xiaoping , YUE Qin , HUANG Xinmei . Quantum synchronizable codes from the Whiteman's generalized cyclotomy[J]. Cryptography and Communications, 2021, 13 (5): 727- 739.
doi: 10.1007/s12095-021-00501-2
17 DINH H Q , NGUYEN B T , TANSUCHAT R . Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm[J]. Applicable Algebra in Engineering, Communication and Computing, 2021, 32 (6): 1- 34.
18 LING San , XING Chaoping . Coding theory: a first course[M]. Cambridge: Cambridge University Press, 2004.
19 ZHANG Jingwei , ZHAO Changan , MA Xiao . Linear complexity of generalized cyclotomic binary sequences of length 2pm[J]. Applicable Algebra in Engineering, Communication and Computing, 2010, 21 (2): 93- 108.
doi: 10.1007/s00200-009-0116-2
20 DING Cunsheng , HELLSETH T . New generalized cyclotomy and its applications[J]. Finite Fields and Their Applications, 1998, 4 (2): 140- 166.
doi: 10.1006/ffta.1998.0207
21 Burton D M . Elementary number theory[M]. 4th ed New York: McGraw-Hill Companies, 1997.
22 WU Yansheng , YUE Qin , FAN Shuqin . Self-reciprocal and self-conjugate-reciprocal irreducible factors of xnλ and their applications[J]. Finite Fields and Their Applications, 2020, 63 (10): 101648.
[1] 王涛,闫统江,孙玉花,刘骞. 基于Reed-Solomon码的量子可同步码[J]. 《山东大学学报(理学版)》, 2022, 57(3): 58-61.
[2] 高健,曹永林. 有限域上2-生成元拟扭转码的构造[J]. J4, 2012, 47(10): 31-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .