您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 151-160.doi: 10.6040/j.issn.1671-9352.0.2022.316

•   • 上一篇    下一篇

双圈图的(无符号)拉普拉斯积和多项式的刻画性质

吴廷增*(),周田   

  1. 青海民族大学数学与统计学院, 西宁 青海 810007
  • 收稿日期:2022-05-17 出版日期:2023-12-20 发布日期:2023-12-19
  • 通讯作者: 吴廷增 E-mail:mathtzwu@163.com
  • 作者简介:吴廷增(1978—), 男, 博士, 教授, 研究方向为图论与组合优化、复杂网络与数据科学.E-mail: mathtzwu@163.com
  • 基金资助:
    国家自然科学基金资助项目(12261071);青海省自然科学基金资助项目(2020-ZJ-920)

Characterizing properties of (signless) Laplacian permanental polynomials of bicyclic graphs

Tingzeng WU*(),Tian ZHOU   

  1. School of Mathematics, Qinghai Minzu University, Xining 810007, Qinghai, China
  • Received:2022-05-17 Online:2023-12-20 Published:2023-12-19
  • Contact: Tingzeng WU E-mail:mathtzwu@163.com

摘要:

Gn个顶点的图, L(G)与Q(G)分别表示图G的拉普拉斯矩阵和无符号拉普拉斯矩阵。多项式π(L(G); x)=per(xI-L(G))(或π(Q(G); x)=per(xI-Q(G)))称为G的拉普拉斯积和多项式(或无符号拉普拉斯积和多项式)。在本文中, 证明了两类双圈图是(无符号)拉普拉斯积和多项式确定的。

关键词: 积和式, (无符号)拉普拉斯矩阵, (无符号)拉普拉斯积和多项式, (无符号)拉普拉斯积和同谱

Abstract:

Let G be a graph with n vertices, and let L(G) and Q(G) be the Laplacian matrix and signless Laplacian matrix of G, respectively. The polynomial π(L(G); x)=per(xI-L(G)) (resp. π(Q(G); x)=per(xI-Q(G))) is called Laplacian permanental polynomial (resp. signless Laplacian permanental polynomial) of G. In this paper, we show that two classes of bicyclic graphs are determined by their (signless) Laplacian permanental polynomials.

Key words: permanent, (signless) Laplacian matrix, (signless) Laplacian permanental polynomial, (signless) Laplacian copermanental

中图分类号: 

  • O157.6

图1

双圈图d(p, q, r)与θ(p, q, r)"

1 VALIANT L G . The complexity of computing the permanent[J]. Theoretical Computer Science, 1979, 8 (2): 189- 201.
doi: 10.1016/0304-3975(79)90044-6
2 MERRIS R , REBMAN K R , WATKINS W . Permanental polynomials of graphs[J]. Linear Algebra and Its Applications, 1981, 38, 273- 288.
doi: 10.1016/0024-3795(81)90026-4
3 BAPAT R B . A bound for the permanent of the Laplacian matrix[J]. Linear Algebra and Its Applications, 1986, 74, 219- 223.
doi: 10.1016/0024-3795(86)90124-2
4 CASH G , GUTMAN I . The lapacian permanental polynomial: formulas and algorithms[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2004, 51 (51): 129- 136.
5 GENG X Y , HU X , LI S C . Further results on permanental bounds for the Laplacian matrix of trees[J]. Linear and Multilinear Algebra, 2010, 58 (5): 571- 587.
doi: 10.1080/03081080902765583
6 GENG X Y , HU S N , LI S C . Permanental bounds of the Laplacian matrix of trees with given domination number[J]. Graphs and Combinatorics, 2015, 31 (5): 1423- 1436.
doi: 10.1007/s00373-014-1451-z
7 LI S C , LI Y , ZHANG X X . Edge-grafting theorems on permanents of Laplacian matrices of graphs and their applications[J]. The Electronic Journal of Linear Algebra, 2013, 26, 28- 48.
8 LIU S Y . On the (signless) Laplacian permanental polynomials of graphs[J]. Graphs and Combinatorics, 2019, 35 (3): 787- 803.
doi: 10.1007/s00373-019-02033-2
9 LIU X G , WU T Z . Computing the permanental polynomials of graphs[J]. Applied Mathematics and Computation, 2017, 304 (C): 103- 113.
10 MERRIS R . The Laplacian permanental polynomial for trees[J]. Czechoslovak Mathematical Journal, 1982, 32 (3): 397- 403.
doi: 10.21136/CMJ.1982.101816
11 VRBA A . Principal subpermanents of the Laplacian matrix[J]. Linear and Multilinear Algebra, 1986, 19 (4): 335- 346.
doi: 10.1080/03081088608817728
12 GOLDWASSER J L . Permanent of the Laplacian matrix of trees with a given matching[J]. Discrete Mathematics, 1986, 61 (2/3): 197- 212.
13 BOTTI P , MERRIS R , VEGA C . Laplacian permanents of trees[J]. SIAM Journal on Discrete Mathematics, 1992, 5 (4): 460- 466.
doi: 10.1137/0405036
14 LIU X G , WU T Z . Graphs determined by the (signless) Laplacian permanental polynomial[J]. Linear and Multilinear Algebra, 2017, 3599- 3615.
15 FARIA I . Permanental roots and the star degree of a graph[J]. Linear Algebra and Its Applications, 1985, 64, 255- 265.
doi: 10.1016/0024-3795(85)90281-2
16 FARIA I . Multiplicity of integer roots of polynomials of graphs[J]. Linear Algebra and Its Applications, 1995, 229, 15- 35.
doi: 10.1016/0024-3795(93)00337-Y
17 LI S C , ZHANG L . Permanental bounds for the signless Laplacian matrix of bipartite graphs and unicyclic graphs[J]. Linear and Multilinear Algebra, 2011, 59 (2): 145- 158.
doi: 10.1080/03081080903261467
18 LI S C , ZHANG L . Permanental bounds for the signless Laplacian matrix of a unicyclic graph with diameter d[J]. Graphs and Combinatorics, 2012, 28 (4): 531- 546.
doi: 10.1007/s00373-011-1057-7
19 WU T Z , ZHOU T , LV H Z . Further results on the star degree of graphs[J]. Applied Mathematics and Computation, 2022, 425, 127076.
doi: 10.1016/j.amc.2022.127076
20 BRUALDI R A , GOLDWASSER J L . Permanent of the Laplacian matrix of trees and bipartite graphs[J]. Discrete Mathematics, 1984, 48 (1): 1- 21.
doi: 10.1016/0012-365X(84)90127-4
[1] 祁忠斌1,叶东2,张和平2. 正则图的环边连通性和环连通性之间的关系[J]. J4, 2009, 44(12): 22-24.
[2] 祁忠斌,张和平 . 一类Fullerene图的1-共振性[J]. J4, 2008, 43(4): 67-72 .
[3] 师铭,魏宗田,刘勇,翁婷婷. 图的顶点赋权邻域粘连度[J]. 《山东大学学报(理学版)》, 2021, 56(5): 26-32.
[4] 杨瑞,刘成立,武楠楠. n棱柱的完美匹配计数及其k-共振性[J]. 《山东大学学报(理学版)》, 2022, 57(11): 37-41.
[5] 吴一凡,王广富. 平面四角链距离谱半径的极图[J]. 《山东大学学报(理学版)》, 2022, 57(2): 84-91.
[6] 兰琳钰,李敬文,张树成,张丽景,申化玉. 图的点可约全标号算法研究[J]. 《山东大学学报(理学版)》, 2023, 58(11): 135-146.
[7] 卢鹏丽,栾睿,郭育红. 图的路(无符号)拉普拉斯谱半径及其能量[J]. 《山东大学学报(理学版)》, 2022, 57(7): 14-21.
[8] 卢鹏丽,刘文智. 图的广义距离谱[J]. 《山东大学学报(理学版)》, 2020, 55(9): 19-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .