《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (11): 37-41.doi: 10.6040/j.issn.1671-9352.0.2020.518
• • 上一篇
杨瑞,刘成立,武楠楠
YANG Rui, LIU Cheng-li, WU Nan-nan
摘要: 当n≥3时,笛卡尔积图Cn×P2是一个多面体图,也称为n棱柱,其中Cn为n长圈,P2为2长路。令G是一个n棱柱的平面嵌入图,k是正整数,若对任意的正整数i(0≤i≤k),从图G中任意删除掉i个两两不交的偶面所得到的图有完美匹配,则称图G是k-共振的。首先得到n棱柱完美匹配数的计算公式;然后对n棱柱的共振性进行讨论,得到了n棱柱是1-共振、2-共振的和k-共振的(k≥3)。
中图分类号:
[1] LOVÁSZ L, PLUMMER M D. Matching theory[M]. New York: North-Holland Press, 1986. [2] PAULING L. The nature of chemical bond[M]. New York: Ithaca University Press, 1939. [3] VALIANTL G. The complexity of computing the permanent[J]. Theoretical Compute Science, 1979, 8(2):189-201. [4] 唐保祥, 李刚, 任韩. 3类图完美匹配的数目[J]. 浙江大学学报(理学版), 2011, 38(4):16-19. TANG Baoxiang, LI Gang, REN Han. The number of the prefect matchings in three types of graphs[J]. Journal of Zhejiang University(Natural Science), 2011, 38(4):16-19. [5] 唐保祥, 任韩. 4类图完美匹配的计数[J]. 武汉大学学报(理学版), 2012, 58(5):441-446. TANG Baoxiang, REN Han. The number of the prefect matchings for four types of graphs[J]. Journal of Wuhan University(Natural Science), 2012, 58(5):441-446. [6] YANG Rui, ZHANG Heping. 2-Resonant fullerenes[J]. European Journal of Combinatorics, 2015, 49:13-24. [7] ZHANG Heping, LIU Saihua. 2-Resonance of plane bipartite graphs and its applications to boron-nitrogen fullerenes[J]. Discrete Applied Mathematics, 2010, 158(14):1559-1569. [8] SHIU W C, ZHANG Heping. A complete characterization for k-resonant Klein-bottle polyhexes[J]. Journal of Mathematical Chemistry, 2008, 43(1):45-59. [9] ZHANG Fuji, WANG Lusheng. k-Resonance of open-ended carbon nanotubes[J]. Journal of Mathematical Chemistry, 2004, 35(2):87-103. [10] BONDY J A, MURTY U S R. Graph theory[M]. New York: Springer, 2008. [11] BRUALDI R A. Introductory combinatorics[M]. New York: North-Holland Press, 2009. [12] DIESTEL R. Graph theory[M]. 5th ed. Berlin: Springer, 2017. |
[1] | 来金花,刘蒙蒙. 含有完美匹配树的最小Steiner k-Wiener指标[J]. 《山东大学学报(理学版)》, 2022, 57(10): 66-71. |
[2] | 王霞,边红,于海征. 整可逆图的克罗内克积的逆[J]. 《山东大学学报(理学版)》, 2021, 56(11): 87-92. |
[3] | 王倩. k-连通图中生成树和完美匹配上的可收缩边[J]. 山东大学学报(理学版), 2016, 51(8): 29-34. |
[4] | 王洪伟. 二部图匹配强迫数的谱[J]. J4, 2009, 44(12): 30-35. |
|