您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (7): 14-21.doi: 10.6040/j.issn.1671-9352.0.2021.321

• • 上一篇    

图的路(无符号)拉普拉斯谱半径及其能量

卢鹏丽1,栾睿1,郭育红2   

  1. 1.兰州理工大学计算机与通信学院, 甘肃 兰州 730050;2.河西学院数学与统计学院, 甘肃 张掖 734000
  • 发布日期:2022-06-29
  • 作者简介:卢鹏丽(1973— ),女,教授,博士生导师,研究方向为图论与复杂网络. E-mail:lupengli88@163.com
  • 基金资助:
    国家自然科学基金资助项目(11861045,62162040)

On path(signless)Laplacian spectral radius and energy of graphs

LU Peng-li1, LUAN Rui1, GUO Yu-hong2   

  1. 1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China;
    2. School of Mathematics and Statistics, Hexi University, Zhangye, 734000, Gansu, China
  • Published:2022-06-29

摘要: 图G的顶点集V(G)={v1,v2,…,vn},其路矩阵记为P(G)=(pij)n×n,pij表示图中vi,vj之间内部顶点不相交路径的最大数目。定义路拉普拉斯矩阵和路无符号拉普拉斯矩阵并得到了其谱半径和能量的界。

关键词: 路矩阵, 路拉普拉斯矩阵, 路无符号拉普拉斯矩阵, 谱半径, 能量

Abstract: Given a graph G with vertex set V(G)={v1,v2,…,vn}, a path matrix associate to G is P(G)=(pij)n×n, pij is the maximum number of interior vertex disjoint paths. The path Laplacian matrix and path signless Laplacian matrix of a connected graph is defined and the bounds of the spectral radius and energy is obtained.

Key words: path matrix, path Laplacian matrix, path signless Laplacian matrix, spectral radius, energy

中图分类号: 

  • O157.5
[1] PATEKAR S C, SHIKARE M M. On the path matrices of graphs and their properties[J]. Adv Appl Discr Math, 2016, 17:169-184.
[2] SHIKARE M M, MALAVADKAR P P, PATEKAR S C, et al. On path eigenvalues and path energy of graphs[J]. MATCH Commun Math Comput Chem, 2018, 79:387-398.
[3] ILIC A, BAŠIC M. Path matrix and path energy of graphs[J]. Applied Mathematics and Computation, 2019, 355:537-541.
[4] AKBARI S, GHODRATI A H, HOSSEINZADEH M A, et al. On the path energy of bicyclic graphs[J]. MATCH Commun Math Comput Chem, 2019, 81:471-484.
[5] WANG Zhao, MAO Yaping, FURTULA B, et al. Bounds for the spectral radius and energy of extended adjacency matrix of graphs[J]. Linear & Multilinear Algebra, 2021, 69(10):1813-1824.
[6] HUANG Peng, LI Jianxi, SHIU W C. Maximizing the signless Laplacian spectral radius of k-connected graphs with given diameter[J]. Linear Algebra and Its Applications, 2021, 617:78-99.
[7] GUO Jining, YU Mengni. A sharp lower bound of the spectral radius with application to the energy of a graph[J]. Discrete Applied Mathematics, 2021, 293:59-63.
[8] PIRZADA S, KHAN S. On distance Laplacian spectral radius and chromatic number of graphs[J]. Linear Algebra and Its Applications, 2021, 625:44-54.
[9] QIN Rui, LI Dan, MENG Jixiang. On the Dα-spectral radius of two types of graphs[J]. Applied Mathematics and Computation, 2021, 396:125898.
[10] BROUWER A E, HAEMERS W H. Spectra of graphs[M]. New York: Springer, 2012.
[11] AKBARI S, GHODRATI A H, GUTMAN I. On path energy of graphs[J]. MATCH Commun Math Comput Chem, 2019, 81:465-470.
[12] FAN K. Maximum properties and inequalities for the eigenvalues of completely continuous operators[J]. Proc Natl Acad Sci, 1951, 37:760-766.
[13] MERCER A M, MERCER P R. Cauchys interlace theorem and lower bounds for the spectral radius[J]. International Journal of Mathematics and Mathematical Sciences, 2000, 23(8):563-566.
[14] BROUWER A E, KOOLEN J H. The vertex-connectivity of a distance-regular graph[J]. Eur J Comb, 2009, 30:668-673.
[15] BROUWER A E, MESNER D M. The connectivity of strongly regular graphs[J]. Eur J Comb, 1985, 6:215-216.
[16] GODSIL C D. Connectivity of minimal Cayley graphs[J]. ARCH Math Basel, 1981, 37:473-476.
[17] WATKINS M E. Connectivity of transitive graphs[J]. J Comb Theory B, 1970, 8:23-29.
[18] GRAHAM R L. Handbook of combinatorics[M]. Cambidge: MIT Press, 1995.
[19] MCCLELLAND B J. Properties of the latent roots of a matrix: the estimation of π-electron energies[J]. J Chem Phys, 1971, 54:640-643.
[1] 张海东,王维忠. 混合图的埃尔米特-广义Randic拟拉普拉斯矩阵和埃尔米特-广义Randic关联能量[J]. 《山东大学学报(理学版)》, 2022, 57(3): 78-84.
[2] 吴一凡,王广富. 平面四角链距离谱半径的极图[J]. 《山东大学学报(理学版)》, 2022, 57(2): 84-91.
[3] 王曾珍,刘华勇,查东东. 带形状参数的三角β-B曲线的渐进迭代逼近[J]. 《山东大学学报(理学版)》, 2021, 56(6): 81-94.
[4] 侯春娟,李远飞,郭连红. 一类广义不可压Boussinesq方程组解的局部存在性及爆破准则[J]. 《山东大学学报(理学版)》, 2021, 56(2): 97-102.
[5] 卢长娜,常胜祥. 基于自适应移动网格的Cahn-Hilliard方程的有限元法[J]. 《山东大学学报(理学版)》, 2021, 56(12): 17-25.
[6] 卢鹏丽,刘文智. 图的广义距离谱[J]. 《山东大学学报(理学版)》, 2020, 55(9): 19-28.
[7] 贾淑香,邓波,冶成福,付凤,陈辉龙. 图的Resolvent Estrada指标的上(下)界刻画[J]. 《山东大学学报(理学版)》, 2020, 55(4): 92-96.
[8] 李远飞,陈雪姣,石金诚. 二元混合物中的热传导方程Phragmén-Lindelöf二择性[J]. 《山东大学学报(理学版)》, 2020, 55(12): 1-12.
[9] 慕娜娜,安新磊,续浩南. 含两个忆阻器的隐藏吸引子及其Hamilton能量控制[J]. 《山东大学学报(理学版)》, 2019, 54(9): 91-97.
[10] 王维忠,周琨强. 混合图的埃尔米特-关联能量[J]. 《山东大学学报(理学版)》, 2019, 54(6): 53-58.
[11] 王旨,陈东华,贺玉成. 多用户全双工无线携能系统中的波束赋形研究[J]. 山东大学学报(理学版), 2016, 51(7): 115-120.
[12] 董建伟,娄光谱,王艳萍. 一个半导体简化能量输运模型稳态解的唯一性[J]. 山东大学学报(理学版), 2016, 51(2): 37-41.
[13] 董建伟, 程少华, 王艳萍. 一维稳态量子能量输运模型的古典解[J]. 山东大学学报(理学版), 2015, 50(03): 52-56.
[14] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65-71.
[15] 郭晓东1,杜鹏1,张雪芬2. 一种WSN中能量有效的分布式检测和功率分配算法[J]. J4, 2012, 47(9): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!