您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 37-41.doi: 10.6040/j.issn.1671-9352.0.2015.146

• • 上一篇    下一篇

一个半导体简化能量输运模型稳态解的唯一性

董建伟,娄光谱,王艳萍   

  1. 郑州航空工业管理学院数理系, 河南 郑州 450015
  • 收稿日期:2015-04-07 出版日期:2016-02-16 发布日期:2016-03-11
  • 作者简介:董建伟(1980— ),男,硕士,副教授,研究方向为偏微分方程.E-mail: dongjianweiccm@163.com
  • 基金资助:
    河南省科技厅基础与前沿技术研究计划项目(162300410077);航空科学基金(2013ZD55006);河南省高等学校青年骨干教师资助计划项目(2013GGJS-142);河南省教育厅科学技术研究重点项目(12A110024);郑州航空工业管理学院青年科研基金(2013111001,2014113002,2015113001)

Uniqueness of stationary solutions to a simplified energy-transport model for semiconductors

DONG Jian-wei, LOU Guang-pu, WANG Yan-ping   

  1. Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, Henan, China
  • Received:2015-04-07 Online:2016-02-16 Published:2016-03-11

摘要: 在一维有界区域上研究一个半导体简化能量输运稳态模型,在某些条件下利用一些不等式技巧证明了该模型解的唯一性。

关键词: 唯一性, 稳态解, 能量输运模型

Abstract: A stationary simplified energy-transport model for semiconductors is studied in a one-dimensional bounded domain. The uniqueness of solutions to the model is proved under some conditions by using some inequality techniques.

Key words: stationary solutions, uniqueness, energy-transport model

中图分类号: 

  • O175.29
[1] 董建伟,琚强昌. 一个一维半导体简化能量输运模型的稳态解 [J]. 数学年刊(A辑),2014,35(5):613-622. DONG Jianwei, JU Qiangchang. A Stationary solution to a 1-dimensional simplified energy-transport model for semiconductors [J]. Chinese Annals of Mathematics(Series A), 2014, 35(5):613-622.
[2] LI Yong. Global existence and asymptotic behavior for an 1-dimensional compressible energy transport model [J]. Acta Mathematica Sientia, 2009, 29B(5):1295-1308.
[3] JUNGEL A. Energy transport in semiconductor devices[J]. Mathematical and Computer Modelling Dynamical Systems, 2010, 16(1): 1-22.
[4] JUNGEL A, PINNAU R, ROHRIG E. Analysis of a bipolar energy-transport model for a metal-oxide-semiconductor diode[J]. Journal of Mathematical Analysis and Applications, 2011, 378(2):764-774.
[5] JUNGEL A, KRISTOFEL P. Lyapunove functionals, weak sequential stability, and uniqueness analysis for energy-transport systems[J]. Annali dell University di Ferrara, 2012, 58(1):89-100.
[6] JUNGEL A, PINNAU R, ROHRIG E. Existence analysis for a simplified energy-transport model for semiconductors[J]. Mathematical Methods in the Applied Sciences, 2013, 36(13):1701-1712.
[7] ZAMPONI N, JUNGEL A. Global existence analysis of degenerate energy-transport models for semiconductors [J]. Journal of Differential Equations, 2015, 258(7):2339-2363.
[8] JUNGEL A, MILISIC J P. A simplified quantum energy-transport model for semiconductors [J].Nonlinear Analysis: Real World Applications, 2011, 12(2):1033-1046.
[9] CHEN Li, CHEN Xiuqing, JUNGEL A. Semiclassical limit in a simplified quantum energy-transport model for semiconductors[J]. Kinetic and Related Models, 2011, 4(4): 1049-1062.
[10] DONG Jianwei, ZHANG Youlin, CHENG Shaohua. Existence of classical solutions to a stationary simplified quantum energy-transport model in 1-dimensional space[J]. Chinese Annals of Mathematics, Series B, 2013, 34(5):691-696.
[11] 董建伟,程少华,王艳萍. 一维稳态量子能量输运模型的古典解 [J]. 山东大学学报(理学版),2015,50(3):52-56. DONG Jianwei, CHENG Shaohua, WANG Yanping. Classical solutions to stationary one-dimensional quantum energy-transport model [J]. Journal of Shandong University(Natural Science), 2015, 50(3):52-56.
[1] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[2] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[3] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[4] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[5] 扈培础,吴爱迪. 关于L-函数的问题[J]. 山东大学学报(理学版), 2016, 51(6): 1-15.
[6] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[7] 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33.
[8] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48.
[9] 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87.
[10] 董建伟, 程少华, 王艳萍. 一维稳态量子能量输运模型的古典解[J]. 山东大学学报(理学版), 2015, 50(03): 52-56.
[11] 别群益. 一类反应扩散系统非常数正解的非存在性[J]. J4, 2010, 45(11): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!