您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 42-49.doi: 10.6040/j.issn.1671-9352.0.2015.151

• • 上一篇    下一篇

行为渐近负相协随机变量阵列加权和的矩完全收敛性

张立君,郭明乐   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241003
  • 收稿日期:2015-04-07 出版日期:2016-02-16 发布日期:2016-03-11
  • 作者简介:张立君(1992— ), 女, 硕士研究生, 研究方向为极限理论.E-mail:18155371569@163.com
  • 基金资助:
    国家自然科学基金资助项目(11271020,11201004);安徽省自然科学基金资助项目(1508085MA11);安徽省教育厅自然科学研究基金重点项目(KJ2014A083)

On complete moment convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables

ZHANG Li-jun, GUO Ming-le   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui, China
  • Received:2015-04-07 Online:2016-02-16 Published:2016-03-11

摘要: 利用Rosenthal 型不等式和截尾的方法, 获得了行为渐近负相协随机变量阵列加权和矩完全收敛的充分条件,并运用这些充分条件, 把完全收敛性结论拓展到矩完全收敛性, 完善了渐近负相协随机变量的相关性质。

关键词: 加权和, 完全收敛性, 渐近负相协随机变量, 矩完全收敛性

Abstract: The complete moment convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables was investigated. By using Rosenthal type inequality and truncation method, the sufficient conditions for complete moment convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables were obtained. By using the sufficient conditions, we extend the corresponding results from the complete convergence to the complete moment convergence. Therefore, we complement the property of asymptotically almost negatively associated random variables.

Key words: weighted sums, asymptotically almost negatively associated random variables, complete convergence, complete moment convergence

中图分类号: 

  • O211
[1] HSU P L, ROBBINS H. Complete convergence and the law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947, 33:25-31.
[2] ERD(¨overO)S P. On a theorem of Hsu and Robbins[J]. Annals of Mathematical Statistics, 1949, 20(2):286-291.
[3] BAEK J I, CHOI I B, NIU Sili. On the complete convergence of weighted sums for arrays of negatively associated variables[J]. Journal of the Korean Statistical Society, 2008, 37(1):73-80.
[4] WANG Xuejun, HU Shuhe, YANG Wenzhi, et al. On complete convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables[J]. Abstract and Applied Analysis, 2012, 2012:315138.
[5] BLOCK H W, SAVITS T H, SHAKED M. Some concepts of negative dependence[J]. Annals of Probability, 1982, 10(3):765-772.
[6] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983, 11(1):286-295.
[7] CHANDRA T K, GHOSAL S. Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables[J]. Acta Mathematica Hungarica, 1996, 71(4):327-336.
[8 ] CHANDRA T K, GHOSAL S. The strong law of large numbers for weighted averages under dependence assumption[J]. Journal of Theoretical Probability, 1996, 9(3):797-809.
[9] Mi-Hwa Ko, Tae-Sung Kim, LIN Zhengyan. The Hájek-Rènyi inequality for the AANA random variables and its applications[J]. Taiwanese journal of Mathematics, 2005, 9(1):111-122.
[10] WANG Yuebao, YAN Jigao, CHENG Fengyang, et al. The strong law of large numbers and the law of iterated logarithm for product sums of NA and AANA random variables[J]. Southeast Asian Bulletin of Mathematics, 2003, 27(2):369-384.
[11] YUAN Demei, AN Jun. Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications[J]. Science in China Series A: Mathematics, 2009, 52(9):1887-1904.
[12] SHEN Aiting, WU Ranchao, CHEN Yan, et al. Complete Convergence of the Maximum Partial Sums for Arrays of Rowwise of AANA Random Variables[J]. Discrete Dynamics in Nature and Society, 2013, 2013:741901.
[13] SHEN Aiting, WU Ranchao. Strong convergence for sequences of asymptotically almost negatively associated random variables[J]. Stochastics: An International Journal of Probability and Stochastic Processes, 2014, 86(2):291-303.
[14] YANG Wenzhi, WANG Xuejun, LING Nengxiang, et al. On complete convergence of moving average process for AANA sequence[J]. Discrete Dynamics in Nature and Society, 2012, 2012:863931.
[15] CHOW Y S. On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica, 1988, 16(3):177-201.
[16] GUO Mingle. On complete moment convergence of weighted sums for arrays of row-wise negatively associated random variables[J]. Stochastics An International Journal of Probability and Stochastic Processes: Formerly Stochastics and Stochastics Reports, 2014, 86(3):415-428.
[17] 吴群英. 混合序列的概率极限理论[M]. 北京:科学出版社, 2006. WU Qunying. Probability limit theory for mixed sequence[M]. Beijing: China Science Press, 2006.
[1] 谭闯, 郭明乐, 祝东进. 行为ND随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 27-32.
[2] 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19.
[3] 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13.
[4] 陈晓林 吴群英. 行混合阵列加权和最大值的完全收敛性[J]. J4, 2010, 45(2): 20-25.
[5] 谭成良,吴群英,田国华 . 行为ρ-混合随机变量阵列加权和的完全收敛性[J]. J4, 2008, 43(6): 87-91 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!