山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 42-49.doi: 10.6040/j.issn.1671-9352.0.2015.151
张立君,郭明乐
ZHANG Li-jun, GUO Ming-le
摘要: 利用Rosenthal 型不等式和截尾的方法, 获得了行为渐近负相协随机变量阵列加权和矩完全收敛的充分条件,并运用这些充分条件, 把完全收敛性结论拓展到矩完全收敛性, 完善了渐近负相协随机变量的相关性质。
中图分类号:
[1] HSU P L, ROBBINS H. Complete convergence and the law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947, 33:25-31. [2] ERD(¨overO)S P. On a theorem of Hsu and Robbins[J]. Annals of Mathematical Statistics, 1949, 20(2):286-291. [3] BAEK J I, CHOI I B, NIU Sili. On the complete convergence of weighted sums for arrays of negatively associated variables[J]. Journal of the Korean Statistical Society, 2008, 37(1):73-80. [4] WANG Xuejun, HU Shuhe, YANG Wenzhi, et al. On complete convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables[J]. Abstract and Applied Analysis, 2012, 2012:315138. [5] BLOCK H W, SAVITS T H, SHAKED M. Some concepts of negative dependence[J]. Annals of Probability, 1982, 10(3):765-772. [6] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983, 11(1):286-295. [7] CHANDRA T K, GHOSAL S. Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables[J]. Acta Mathematica Hungarica, 1996, 71(4):327-336. [8 ] CHANDRA T K, GHOSAL S. The strong law of large numbers for weighted averages under dependence assumption[J]. Journal of Theoretical Probability, 1996, 9(3):797-809. [9] Mi-Hwa Ko, Tae-Sung Kim, LIN Zhengyan. The Hájek-Rènyi inequality for the AANA random variables and its applications[J]. Taiwanese journal of Mathematics, 2005, 9(1):111-122. [10] WANG Yuebao, YAN Jigao, CHENG Fengyang, et al. The strong law of large numbers and the law of iterated logarithm for product sums of NA and AANA random variables[J]. Southeast Asian Bulletin of Mathematics, 2003, 27(2):369-384. [11] YUAN Demei, AN Jun. Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications[J]. Science in China Series A: Mathematics, 2009, 52(9):1887-1904. [12] SHEN Aiting, WU Ranchao, CHEN Yan, et al. Complete Convergence of the Maximum Partial Sums for Arrays of Rowwise of AANA Random Variables[J]. Discrete Dynamics in Nature and Society, 2013, 2013:741901. [13] SHEN Aiting, WU Ranchao. Strong convergence for sequences of asymptotically almost negatively associated random variables[J]. Stochastics: An International Journal of Probability and Stochastic Processes, 2014, 86(2):291-303. [14] YANG Wenzhi, WANG Xuejun, LING Nengxiang, et al. On complete convergence of moving average process for AANA sequence[J]. Discrete Dynamics in Nature and Society, 2012, 2012:863931. [15] CHOW Y S. On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica, 1988, 16(3):177-201. [16] GUO Mingle. On complete moment convergence of weighted sums for arrays of row-wise negatively associated random variables[J]. Stochastics An International Journal of Probability and Stochastic Processes: Formerly Stochastics and Stochastics Reports, 2014, 86(3):415-428. [17] 吴群英. 混合序列的概率极限理论[M]. 北京:科学出版社, 2006. WU Qunying. Probability limit theory for mixed sequence[M]. Beijing: China Science Press, 2006. |
[1] | 谭闯, 郭明乐, 祝东进. 行为ND随机变量阵列加权和的矩完全收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 27-32. |
[2] | 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19. |
[3] | 许日丽,郭明乐. 行为ND随机变量阵列加权和的矩完全收敛性[J]. J4, 2013, 48(6): 9-13. |
[4] | 陈晓林 吴群英. 行混合阵列加权和最大值的完全收敛性[J]. J4, 2010, 45(2): 20-25. |
[5] | 谭成良,吴群英,田国华 . 行为ρ-混合随机变量阵列加权和的完全收敛性[J]. J4, 2008, 43(6): 87-91 . |
|