山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 61-71.doi: 10.6040/j.issn.1671-9352.0.2018.093
甄苇苇,曾剑,任建龙
ZHEN Wei-wei, ZENG Jian, REN Jian-long
摘要: 研究了一类变系数抛物型方程的源项重构问题,这里的源项仅与时间相关。与以往工作不同,文中的附加条件是关于空间变量积分后得到的,这种类型的附加条件有利于消除随机选择所带来的误差,但同时会导致很多分析方法不可用。基于变分理论,首先给出了变分公式,并利用变分公式证明了解的唯一性;其次给出了时间离散模型和基于线性离散化的变分形式,导出了一系列先验估计,并证明了弱解的存在性。
中图分类号:
[1] | LIN Y, TAIT R. On a class of non-local parabolic boundary value problems[J]. International Journal of Engineering Science, 1994, 32(3):395-407. |
[2] | 张颖婍,李占培,刘廷章,等.基于三维热传导方程的空调房间温度场软测量方法[J].测控技术,2016,35(8):25-27. ZHANG Yingqi, LI Zhanpei, LIU Tingzhang, et al. Soft measurement of an air-conditioning temperature field based on three-dimension air heat equation[J]. Measurement and Control Technology, 2016, 35(8):25-27. |
[3] | 陈珊,马俊春,刘朝辉,等.有罩雷达目标表面温度场求解方法[J].红外与激光工程,2017,46(4):76-81. CHEN Shan, MA Junchun, LIU Zhaohui, et al. Calculation method of shrouded radar target surface temperature field[J]. Infrared and Laser Engineering, 2017, 46(4):76-81. |
[4] | 薛益民.含积分边值条件的分数阶微分方程耦合系统正解的唯一性[J].四川大学学报(自然科学版),2016,53(6):1227-1232. XUE Yimin. Uniqueness of positive solution for a nonlinear fractional differential equation coupled system with integral boundary value condition[J]. Journal of Sichuan University(Natural Science Edition), 2016, 53(6):1227-1232. |
[5] | DENG Zuicha, YU Jianning, YANG Liu, et al. Identifying the coefficient of first-order in parabolic equation from final measurement data[J]. Mathematics & Computers in Simulation, 2008, 77(4):421-435. |
[6] | HASSANOV A, SLODICCKA M. An analysis of inverse source problems with final time measured output data for the heat conduction equation: a semigroup approach[J]. Applied Mathematics Letters, 2013, 26(2):207-214. |
[7] | BOCKSTAL K V, SLODICCKA M. Recovery of a space-dependent vector source in thermoelastic systems[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 23(6):956-968. |
[8] | 张雷,李照兴.关于一类非线性系数反演问题最优解的适定性研究[J].兰州交通大学学报,2016,35(6):131-136. ZHANG Lei, LI Zhaoxing. Well-posedness of an optimal solution to the inverse problem of a class of nonlinear coefficient[J]. Journal of Lanzhou JiaoTong University, 2016, 35(6):131-136. |
[9] | YANG Liu, DEHGHAN M, YU Jianning, et al. Inverse problem of time-dependent heat sources numerical reconstruction[J]. Mathematics & Computers in Simulation, 2011, 81(8):1656-1672. |
[10] | FANG Xiaoping, DENG Youjun, LI Jing. Numerical methods for reconstruction of source term of heat equation from the final overdetermination[J]. Bulletin of the Korean Mathematical Society, 2015, 52(5):1495-1515. |
[11] | DENG Zuicha, YANG Liu, YU Jianning, et al. Identifying the radiative coefficient of an evolutional type heat conduction equation by optimization method[J]. Journal of Mathematical Analysis & Applications, 2010, 362(1):210-223. |
[12] | JOHANSSON T, LESNIC D. Determination of a spacewise dependent heat source[J]. Applied Mathematical Modelling, 2007, 209(1):66-80. |
[13] | DENG Zuicha, YANG Liu. An inverse problem of identifying the coefficient of first-order in a degenerate parabolic equation [J]. Journal of Computational & Applied Mathematics, 2011, 235(15):4404-4417. |
[14] | 王嘉炜,陈丽,唐圣学.基于傅里叶级数的功率器件热模型研究[J].电气应用,2017,36(18):80-83. WANG Jiawei, CHEN Li, TANG Shengxue. Research on thermal model of power devices based on Fourier series[J]. Electrical Applications, 2017, 36(18):80-83. |
[15] | 胡敏,黄旭伟.电子封装结构电源单元的热流耦合模拟及其优化设计[J].世界科技研究与发展,2016,38(3):613-618. HU Min, HUANG Xuwei. Heat and flow coupled simulation and optimization design of power supply unit for electronic packaging structure[J]. World Science-Technology Research and Development, 2016, 38(3):613-618. |
[16] | NECAS JINDRICH. Les méthodes directes en théorie des équations elliptiques[M]. Prague: Academia,1967. |
[17] | GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order [J]. Grundlehren Der Mathematischen Wissenschaften, 1997, 224(3):469-484. |
[18] | KACUR J. Method of rothe in evolution equations [M]. Berlin: Springer, 1986. |
[1] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[2] | 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54. |
[3] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[4] | 扈培础,吴爱迪. 关于L-函数的问题[J]. 山东大学学报(理学版), 2016, 51(6): 1-15. |
[5] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[6] | 董建伟,娄光谱,王艳萍. 一个半导体简化能量输运模型稳态解的唯一性[J]. 山东大学学报(理学版), 2016, 51(2): 37-41. |
[7] | 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33. |
[8] | 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48. |
[9] | 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87. |
[10] | 董建伟, 程少华, 王艳萍. 一维稳态量子能量输运模型的古典解[J]. 山东大学学报(理学版), 2015, 50(03): 52-56. |
|