您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 97-102.doi: 10.6040/j.issn.1671-9352.0.2020.234

• • 上一篇    

一类广义不可压Boussinesq方程组解的局部存在性及爆破准则

侯春娟,李远飞,郭连红*   

  1. 广东财经大学华商学院数据科学学院, 广东 广州 511300
  • 发布日期:2021-01-21
  • 作者简介:侯春娟(1983— ),女,硕士,副教授,研究方向为偏微分方程理论与应用. E-mail:houchunjuanhao@163.com*通信作者简介:郭连红(1982— ),女,硕士,副教授,研究方向为偏微分方程理论与应用. E-mail:guoat164@163.com
  • 基金资助:
    广东普通高校重点科研(自然科学)资助项目(2019KZDXM042);广东财经大学华商学院校内导师制项目(2020HSDS02)

Local existence and blow-up criterion of solutions to a class of generalised incompressible Boussinesq equations

HOU Chun-juan, LI Yuan-fei, GUO Lian-hong*   

  1. College of Data Science, Huashang College, Guangdong University of Finance Economics, Guangzhou 511300, Guangdong, China
  • Published:2021-01-21

摘要: 研究一类带黏性项、零扩散广义Boussinesq方程组局部解的存在性问题,应用正则化方法、压缩映像原理以及经典的能量估计方法,证明了带黏性项、零扩散的广义Boussinesq方程组解的局部存在性,应用Sobolev不等式获得解的一个爆破准则。研究结果能揭示一类特殊流体运动的物理现象,能更精确地反应流体的运动情况。

关键词: Boussinesq方程组, 正则化, 能量估计方法, 局部存在性

Abstract: A kind of adhesive, zero spread of the existence of the generalized local solution Boussinesq equations is considered. Using the regularization method, the compression mapping principle and the classical energy estimation method, the adhesive, zero spread of the local existence of the generalized Boussinesq equations are derived. And using the technique of Sobolev inequality, a blasting principles is obtained. The results of the study reveals a kind of special physical phenomenon of fluid movement.

Key words: Boussinesq equations, regularization, energy estimation method, local well-posedness

中图分类号: 

  • O175.29
[1] GILL A E. Atmosphere-ocean dynamics[M]. London: Academic Press, 1982.
[2] MAJDA A. Introduction to PDEs and waves for the atmosphere and ocean[M]. New York: American Mathematical Society Press, 2003.
[3] PEDLOSKY J. Geophysical fluid dyanmics[M]. New York: Springer-Verlag Press, 1987.
[4] CHAE D, NAM H S. Local existence and blow-up criterion for the Boussinesq equations[J]. Proceeding of the Royal Society of Edinburgh Section A Mathematics, 1997, 127(5):935-946.
[5] LIU Xiaofeng, WANG Meng, ZHANG Zhifei. Local well-posedness and blow-up criterion of the Boussinesq equations in critical besov spaces[J]. Journal of Mathematical Fluid Mechanics, 2010, 12(2):280-292.
[6] LARIOS A, LUNASIN E, TITI E S. Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion[J]. Journal of Differential Equations, 2013, 255(9):2636-2654.
[7] WU Gang, ZHENG Xiaoxin. Golbal well-posedness for the two-domensional nonlinear Boussinesq equations with vertical dissipations[J]. Journal of Differential Equations, 2013, 255(9):2891-2926.
[8] YAO Zhengan, WANG Qiru, BIE Junyi. On the well-posedness of the iniviscid Boussinesq equations in the Besov-Morrey spaces[J]. Kinetic Related Models, 2015, 8(3):395-411.
[9] XIANG Zhaoyin, YAN Wei. Global regularity of solutions to the Boussinesq equations with fractional diffusion[J]. Advances in Differential Equations, 2013, 18(11/12):1105-1128.
[10] YE Zhuan. A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation[J]. Acta Mathematica Scientia, 2015, 35(1):112-120.
[11] YAMAZAKI K. On the global regularity of N dimensional generalized Boussinesq system[J]. Applications of Mathematics, 2015, 60(2):109-133.
[12] CAO Chongsheng, WU Jiahong. Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation[J]. Archive for Rational Mechanics and Analysis, 2013, 208(3):985-1004.
[13] ABIDI H, HMIDI T. On the global well-posedness for Boussinesq system[J]. Journal of Differential Equations, 2007, 233(1):199-220.
[14] JIU Quansen, MIAO Changxing, WU Jiahong, et al. The 2D incompressible Boussinesq equations with general critical dissipation[J]. SIAM Journal of Mathematical Analysis, 2014, 46(5):3426-3454.
[15] KUTEV N, KOLKOVSKA N, DIMOVA M. Global existence to generalized Boussinesq equation with combined power-type nonlinearities[J]. Journal of Mathematical Analysis and Applications, 2014, 410(1):427-444.
[16] YE Zhuan, XU Xiaojing. Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation[J]. Journal of Differential Equations, 2016, 260(2):6716-6744.
[17] 王艳萍, 郭柏灵. 一类广义Boussinesq型方程解的爆破[J]. 应用数学和力学, 2007, 28(11):1281-1286. WANG Yanping, GUO Boling. Blow-up of the solution for a generalized Boussinesq equation[J]. Applied Mathematics and Mechanics, 2007, 28(11):1281-1286.
[18] EVANS L C. Partial differential equations[M]. Providence: American Mathematical Society Press, 1998.
[19] MAJDA A J, BERTOZZI A L, ABLOWITZ M J. Vorticity and incompressible flow[M]. Cambrideg: Cambridge University Press, 2002.
[1] 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96.
[2] 夏吾吉毛,黄水波,邓德杰. 含Hardy位势的非强制拟线性椭圆方程解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 24-32.
[3] 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24.
[4] 及歆荣,侯翠琴,侯义斌,赵斌. 基于筛选机制的L1核学习机分布式训练方法[J]. 山东大学学报(理学版), 2016, 51(9): 137-144.
[5] 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33.
[6] 朱广军,张玉海,张 超 . 求解不适定方程的两步定常迭代法[J]. J4, 2007, 42(10): 47-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!