《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 97-102.doi: 10.6040/j.issn.1671-9352.0.2020.234
• • 上一篇
侯春娟,李远飞,郭连红*
HOU Chun-juan, LI Yuan-fei, GUO Lian-hong*
摘要: 研究一类带黏性项、零扩散广义Boussinesq方程组局部解的存在性问题,应用正则化方法、压缩映像原理以及经典的能量估计方法,证明了带黏性项、零扩散的广义Boussinesq方程组解的局部存在性,应用Sobolev不等式获得解的一个爆破准则。研究结果能揭示一类特殊流体运动的物理现象,能更精确地反应流体的运动情况。
中图分类号:
[1] GILL A E. Atmosphere-ocean dynamics[M]. London: Academic Press, 1982. [2] MAJDA A. Introduction to PDEs and waves for the atmosphere and ocean[M]. New York: American Mathematical Society Press, 2003. [3] PEDLOSKY J. Geophysical fluid dyanmics[M]. New York: Springer-Verlag Press, 1987. [4] CHAE D, NAM H S. Local existence and blow-up criterion for the Boussinesq equations[J]. Proceeding of the Royal Society of Edinburgh Section A Mathematics, 1997, 127(5):935-946. [5] LIU Xiaofeng, WANG Meng, ZHANG Zhifei. Local well-posedness and blow-up criterion of the Boussinesq equations in critical besov spaces[J]. Journal of Mathematical Fluid Mechanics, 2010, 12(2):280-292. [6] LARIOS A, LUNASIN E, TITI E S. Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion[J]. Journal of Differential Equations, 2013, 255(9):2636-2654. [7] WU Gang, ZHENG Xiaoxin. Golbal well-posedness for the two-domensional nonlinear Boussinesq equations with vertical dissipations[J]. Journal of Differential Equations, 2013, 255(9):2891-2926. [8] YAO Zhengan, WANG Qiru, BIE Junyi. On the well-posedness of the iniviscid Boussinesq equations in the Besov-Morrey spaces[J]. Kinetic Related Models, 2015, 8(3):395-411. [9] XIANG Zhaoyin, YAN Wei. Global regularity of solutions to the Boussinesq equations with fractional diffusion[J]. Advances in Differential Equations, 2013, 18(11/12):1105-1128. [10] YE Zhuan. A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation[J]. Acta Mathematica Scientia, 2015, 35(1):112-120. [11] YAMAZAKI K. On the global regularity of N dimensional generalized Boussinesq system[J]. Applications of Mathematics, 2015, 60(2):109-133. [12] CAO Chongsheng, WU Jiahong. Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation[J]. Archive for Rational Mechanics and Analysis, 2013, 208(3):985-1004. [13] ABIDI H, HMIDI T. On the global well-posedness for Boussinesq system[J]. Journal of Differential Equations, 2007, 233(1):199-220. [14] JIU Quansen, MIAO Changxing, WU Jiahong, et al. The 2D incompressible Boussinesq equations with general critical dissipation[J]. SIAM Journal of Mathematical Analysis, 2014, 46(5):3426-3454. [15] KUTEV N, KOLKOVSKA N, DIMOVA M. Global existence to generalized Boussinesq equation with combined power-type nonlinearities[J]. Journal of Mathematical Analysis and Applications, 2014, 410(1):427-444. [16] YE Zhuan, XU Xiaojing. Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation[J]. Journal of Differential Equations, 2016, 260(2):6716-6744. [17] 王艳萍, 郭柏灵. 一类广义Boussinesq型方程解的爆破[J]. 应用数学和力学, 2007, 28(11):1281-1286. WANG Yanping, GUO Boling. Blow-up of the solution for a generalized Boussinesq equation[J]. Applied Mathematics and Mechanics, 2007, 28(11):1281-1286. [18] EVANS L C. Partial differential equations[M]. Providence: American Mathematical Society Press, 1998. [19] MAJDA A J, BERTOZZI A L, ABLOWITZ M J. Vorticity and incompressible flow[M]. Cambrideg: Cambridge University Press, 2002. |
[1] | 竺晓霖,翟成波. 一类二阶微分方程Sturm-Liouville边值问题正解的局部存在性与唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 91-96. |
[2] | 夏吾吉毛,黄水波,邓德杰. 含Hardy位势的非强制拟线性椭圆方程解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 24-32. |
[3] | 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24. |
[4] | 及歆荣,侯翠琴,侯义斌,赵斌. 基于筛选机制的L1核学习机分布式训练方法[J]. 山东大学学报(理学版), 2016, 51(9): 137-144. |
[5] | 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33. |
[6] | 朱广军,张玉海,张 超 . 求解不适定方程的两步定常迭代法[J]. J4, 2007, 42(10): 47-53 . |
|