《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 24-32.doi: 10.6040/j.issn.1671-9352.0.2018.671
• • 上一篇
夏吾吉毛1,黄水波1*,邓德杰2
XIAWU Ji-mao1, HUANG Shui-bo1*, DENG De-jie2
摘要: 主要研究了一类含Hardy位势和低阶项的非强制拟线性椭圆方程解的存在性和正则性,重点考虑了低阶项的正则化效应和Hardy位势对解的存在性的影响。
中图分类号:
[1] PORRETTA A. Uniqueness and homogenization for a class of noncoercive operators in divergence form[J]. Atti Del Seminario Matematico e Fisico Universita di Modena, 1998, 46(suppl):915-936. [2] BOCCARDO L. Some elliptic problems with degenerate coercivity[J]. Advanced Nonlinear Studies, 2006, 6(1):1-12. [3] BOCCARDO L, BRIZIS H. Some remarks on a class of elliptic equations with degenerate coercivity[J]. Bollettino Della Unione Matematica Italiana, 2003, 9(3):521-530. [4] BOCCARDO L, DALL'AGLIO A, ORSINA L. Existence and regularity results for some elliptic equations with degenerate coercivity[J]. Atti Del Seminario Matematico e Fisico Universita di Modena, 1998, 46(suppl):51-82. [5] CIRMI G R. On the existence of solutions to non-linear degenerate elliptic equations with measures data[J]. Ricerche Mat, 1993, 42(2):315-329. [6] GIACHETTI D, PORZIO M M. Existence results for some nonuniformly elliptic equations with irregular data[J]. Journal of Mathematical Analysis and Applications, 2001, 257(1):100-130. [7] GIACHETTI D, PORZIO M M. Elliptic equations with degenerate coercivity: gradient regularity[J]. Acta Mathematica Sinica, 2003, 19(2):349-370. [8] ALVINO A, BOCCARDO L, FERONE V, et al. Existence results for nonlinear elliptic equations with degenerate coercivity[J]. Annali di Matematica Pura ed Applicata, 2003, 182(1):53-79. [9] MERCALDO A, PERAL I, PRIMO A. Results for degenerate nonlinear elliptic equations involving a Hardy potential[J]. Journal of Differential Equations, 2011, 251(11):3114-3142. [10] GISELLA C. The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity[J]. Rendiconti Di Matematica E Delle Sue Applicazioni, 2010, 27(3/4):299-314. [11] ORSINA L, PRIGNET A. Non-existence of solutions for some nonlinear elliptic equations involving measures[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2000, 130(1):167-187. [12] BÉNILAN P, BOCCARDO L, GALLOUËT T, et al. An L1 theory of existence and uniqueness of nonlinear elliptic equations[J]. Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, 1995, 22(2):241-273. |
[1] | 张瑞敏,林迎珍. 多点周期边值问题新的再生核方法[J]. J4, 2013, 48(12): 42-46. |
[2] | 伍 芸,姚仰新,柯 敏 . 含Hardy位势的双调和方程特征值问题[J]. J4, 2008, 43(9): 81-84 . |
[3] | 桑彦彬,陈娟,任艳. 带有Hardy项的奇异p-重调和方程正解的唯一性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 75-80. |
|