您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (2): 18-24.doi: 10.6040/j.issn.1671-9352.0.2017.292

• • 上一篇    下一篇

椭圆方程柯西问题磨光正则化参数的后验选取

丁凤霞,程浩*   

  1. 江南大学理学院, 江苏 无锡 214122
  • 收稿日期:2017-06-14 出版日期:2018-02-20 发布日期:2018-01-31
  • 通讯作者: 程浩(1983— ),男,副教授,研究方向为数学物理方程反问题.E-mail:chenghao@jiangnan.edu.cn E-mail:2282223175@qq.com
  • 作者简介:丁凤霞(1992— ),女,硕士研究生,研究方向为数学物理方程反问题.E-mail:2282223175@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11426117);江苏省自然科学基金资助项目(BK20130118);中国石油化工股份有限公司科技资助项目(P15165)

A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation

DING Feng-xia, CHENG Hao*   

  1. School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2017-06-14 Online:2018-02-20 Published:2018-01-31

摘要: 通过将带有参数的Gaussian函数和测量数据作卷积,把不适定问题转化为适定问题进行求解,给出基于Morozov偏差原理的后验参数选取规则并得到了精确解和正则近似解之间的误差估计。数值实验表明了磨光正则化后验参数选取规则的有效性。

关键词: 椭圆方程柯西问题, 磨光正则化方法, 数值实验, 后验参数选取, 误差估计

Abstract: We transform the ill-posed problem into a well-posed problem by convolutioning the Gaussian function with parameters and the measurement data. A posteriori parameter choice rule is given which is based on Morozovs discrepancy principle and the error estimates between the exact solution and its approximation are also given. Numerical experiments show the validity of mollification regularization posteriori parameter choice rule.

Key words: mollification regularization method, posteriori parameter choice, error estimation, the Cauchy problem of an elliptic equation, numerical experiment

中图分类号: 

  • O241.8
[1] GORENFLO R. Funktionentheoretische bestimmung des aussenfeldes zu einer zweidimensionalen magnetohydrostatischen konfiguration[J]. Zeitschrift Für Angewandte Mathematik and Physik, 1965, 16(2):279-290.
[2] VIANO G A. Solution of the Hausdorff moment problem by the use of Pollaczek polynomials[J]. Journal of Mathematical Analysis and Applications, 1991, 156(2):410-427.
[3] JOHNSON C R. Computational and numerical methods for bioelectric field problems[J]. Critical Reviews in Biomedical Engineering, 1997, 25(1):1-81.
[4] COLLI-FRANZONE P,MAGENES E. On the inverse potential problem of electrocardiology[J]. Calcolo, 1979, 16(4):459-538.
[5] ALESSANDRINI G. Stable determination of a craek from boundary measurements[J]. Proceedings of the Royal Society of Edinburgh, 1993, 123(3):497-516.
[6] COLLI-FRANZONE P, TENTONI L G, BARUFFI C V, et al. A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data[J]. Mathematical Biosciences, 1985, 77(1):353-396.
[7] HADAMARD J. Lecture on the Cauchy problem in linear partial differential equations[M]. New Haven: Yale University Press, 1923.
[8] 刘松树.几类偏微分方程不适定问题的正则化方法[D].哈尔滨:哈尔滨工业大学,2014. LIU Songshu. Regularization methods for ill-posed problems of several partial differential equtions[D]. Harbin:Harbin Institute of Technology, 2014.
[9] WEI Ting, CHEN Yonggang, LIU Jichuan. A variational-type method of fundamental solutions for a Cauchy problem of Laplaces equation[J]. Applied Mathematical Modelling, 2013, 37(3):1039-1053.
[10] FU Chuli, LI Haifeng, QIAN Zhi, et al. Fourier regularization method for solving a Cauchy problem for the Laplace equation[J]. Inverse Problems in Science and Engineering, 2008, 16(2):159-169.
[11] XIONG Xiangtan, FU Chuli. Central difference regularization method for the Cauchy problem of the Laplaces equation[J].Applied Mathematics and Computation, 2006, 181(1):675-684.
[12] VANI C, AVUDAINAYAGAM A. Regularized solution of the Cauchy problem for the Laplace equation using Meyer wavelets[J]. Mathematical and Computer Modelling, 2002, 36(9-10):1151-1159.
[13] XIONG Xiangtuan, SHI Wanxia, FAN Xiaoyan. Two numerical methods for a Cauchy problem for modified Helmholtz equation[J]. Applied Mathematical Modelling, 2011, 35(10):4951-4964.
[14] QIN Haihua, WEI Ting. Quasi-reversibility and truncation methods to solve a Cauchy problem for the modified Helmholtz equation[J]. Mathematics and Computers in Simulation, 2009, 80(2):352-366.
[15] CHENG Hao, FENG Xiaoli, FU Chuli. A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case[J]. Inverse Problems in Science and Engineering, 2010, 18(7):971-982.
[16] 邓志亮.两类不适定问题的正则化方法研究[D].兰州:兰州大学,2010. DENG Zhiliang. The study of the regularization methods for two classes of ill-posed problems[D]. Lanzhou: Lanzhou University, 2010.
[17] FU Chuli, XIONG Xiangtuan, QIAN Zhi. Fourier regularization method for solving a cauchy problem for the Laplace equation[J]. Inverse Problems in Science Engineering, 2008, 16(2):159-169.
[18] HÀO D N, HIEN P M, SAHLI H. Stability results for a Cauchy problem for an elliptic equation[J]. Inverse Problems, 2007, 23(1):421-461.
[1] 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34.
[2] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84.
[3] 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63.
[4] 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39.
[5] 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25.
[6] 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108.
[7] 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46.
[8] 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28.
[9] 马宁. 含弥散项渗流问题的正交配置法[J]. J4, 2011, 46(2): 78-81.
[10] 周建伟1,羊丹平2*. 二维区域Legendre-Galerkin谱方法的后验误差估计[J]. J4, 2011, 46(11): 122-126.
[11] 陆瑶1,李德生2,杨洋1. 非线性SchrÖdinger方程的Fourier谱逼近[J]. J4, 2011, 46(1): 119-126.
[12] 李志涛. 变形介质中可混溶流体驱动问题的有限差分方法[J]. J4, 2010, 45(6): 50-55.
[13] 佐春梅,程爱杰*. 多孔介质中控制释放耦合问题的有限元方法[J]. J4, 2009, 44(2): 33-38.
[14] 席开华1,任永强1,程爱杰1*,陈国2,邵振波2,韩培慧2. 两相多组分流的Galerkin有限元解法[J]. J4, 2009, 44(12): 6-13.
[15] 周意元,张明望*,吕艳丽,赵玉琴 . 凸二次规划的一种宽邻域预估-校正算法[J]. J4, 2008, 43(9): 73-80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!