您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (2): 25-31.doi: 10.6040/j.issn.1671-9352.0.2017.266

• • 上一篇    下一篇

带导数项共振问题的可解性

叶芙梅   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2017-05-31 出版日期:2018-02-20 发布日期:2018-01-31
  • 作者简介:叶芙梅(1994— ), 女, 硕士研究生, 研究方向为常微分方程边值问题. E-mail:18368916729@163.com
  • 基金资助:
    国家自然科学基金资助项目(11671322);天元基金资助项目(11626061)

Existence results of a resonance problem with derivative terms

YE Fu-mei   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2017-05-31 Online:2018-02-20 Published:2018-01-31

摘要: 得到带导数项共振问题:{u″(t)=f(t,u(t),u'(t)), t∈[0,1],u(0)=εu'(0), u(1)=αu(η)。在共振条件α(η+ε)=1+ε下解的存在性, 其中常数ε∈[0,+∞), α∈(0,∞), η∈(0,1)且αη2<1, 函数f:[0,1]×R2→R连续且满足Nagumo条件。主要结果的证明基于上下解方法和紧向量场方程的解集连通理论。

关键词: 连通集, Nagumo 条件, 共振, 存在性, 无序上下解

Abstract: This paper shows the existence results of a resonance problem with derivative terms{u″(t)=f(t,u(t),u'(t)), t∈[0,1],u(0)=εu'(0), u(1)=αu(η).under the condition of α(η+ε)=1 at resonance, where ε∈[0,+∞), α∈(0,∞), η∈(0,1)are given constants, and αη<21. f:[0,1]×R2→R is continuous and satisfies the Nagumo condition. The proof of the main results is based on the method of upper and lower solutions and the connectivity theory of the solution set.

Key words: existence, resonance, Nagumo condition, connectivity, disordered lower and upper solutions

中图分类号: 

  • O175.8
[1] IIIN V A, MOISEEV E I. Non-local boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[J]. Journal of Differential Equations, 1987, 23(7):803-810.
[2] ZHANG Guowei, SUN Jingxian. Positive solutions of m-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2004, 291(1):406-418.
[3] ZHANG Guowei, SUN Jingxian. Multiple positive solutions of singular second-order m-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2006, 317(1):442-447.
[4] MA Ruyun. Positive solutions of a nonlinear three-point boundary value problem[J]. Electronic Journal of Differential Equations, 1999, 34(1):1-8.
[5] HAN Xiaoling. Positive solutions for a three-point boundary value problem at resonance[J]. Journal of Mathematical Analysis and Applications, 2007, 336(2):556-568.
[6] MA Ruyun. Nonlinear discrete Sturm-Liouville problems at resonance[J]. Nonlinear Analysis, 2007, 67(11):3050-3057.
[7] MA Ruyun. Multiplicity results for a three-point boundary value problem at resonance[J]. Nonlinear Analysis, 2003, 53(6):777-789.
[8] AN Yulian. Existence of solutions for a three-point boundary value problem at resonance[J]. Nonlinear Analysis, 2006, 65(6):1633-1643.
[9] BERNFELD S R, LAKSHMIKANTHAM V. An introduction to nonlinear boundary value problem[M]. New York: Academic Press, 1974: 25-31.
[1] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[2] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[3] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[4] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[5] 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73.
[6] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[7] 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41.
[8] 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52.
[9] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[10] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[11] 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41.
[12] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48.
[13] 董建伟, 程少华, 王艳萍. 一维稳态量子能量输运模型的古典解[J]. 山东大学学报(理学版), 2015, 50(03): 52-56.
[14] 李娇. Caputo分数阶微分方程初值问题解的存在性与惟一性[J]. J4, 2013, 48(4): 60-64.
[15] 黎明,徐明瑜. 分数阶Bloch方程的解[J]. J4, 2013, 48(1): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!