山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (12): 36-41.doi: 10.6040/j.issn.1671-9352.0.2015.310
朱雯雯
ZHU Wen-wen
摘要: 研究了一阶周期边值问题{u'(t)+a(t)u(t)=λf(t,u(t)), t∈[0,T],u(0)=u(T)正解的个数与参数λ的关系, 其中λ>0, a∈C(R, [0,+∞))且∫T0a(θ)dθ>0, f∈C([0,T]×[0,+∞),(0,+∞))以及f∞=limu→∞ inf(f(t,u))/u=∞对任意的t∈[0,T]一致成立。 运用上下解方法及拓扑度理论, 获得存在λ*>0, 当λ>λ*时, 该问题不存在正解, λ=λ* 时, 该问题恰有一个正解; 0<λ<λ* 时, 该问题至少存在两个正解。
中图分类号:
[1] WAN Aying, JIANG Daqing. Existence of positive periodic solutions for functional differential equations[J]. Kyushu Journal of Mathematics, 2002, 56(1):193-202. [2] GRAEF J R, KONG Lingju. Existence of multiple periodic solutions for first order functional differential equations[J]. Mathematical and Computer Modelling, 2011, 54(11-12):2962-2968. [3] MA Ruyun, CHEN Ruipeng, CHEN Tianlan. Existence of positive periodic solutions of nonlinearfirst-order delayed differential equations[J]. Journal of Mathematical Analysis and Applications, 2011, 384:527-535. [4] WENG P. Existence and global attractivity of periodic solution of integrodifferential equation in population dynamics[J]. Acta Applicandae Mathematicae, 1996, 12(4):427-434. [5] WU Yuexiang. Existence of positive periodic solutions for a functional differential equation with a parameter[J]. Nonlinear Analysis, 2008, 68(7):1954-1962. [6] PADHI S, SRIVASTAVA S. Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics[J]. Applied Mathemaatics and Computation, 2008, 203(1):1-6. [7] HE Tieshan, YANG Fengjian, CHEN Chuanyong, et al. Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter[J]. Computers and Mathematics with Applications, 2011, 61(11):3355-3363. [8] ZHANG Guang, CHENG Suisun. Positive periodic solutions of non-autonomous functinal differential equations depengding on a parameter[J]. Abstract and Applied Analysis, 2002, 7(5):279-286. [9] CHRISTOPHER C T. Existence of solutions to first-order periodic boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2006, 323(2):1325-1332. [10] WANG Haiyan. Postive periodic solutions of functional differential equations[J]. Journal of Differential Equations, 2004, 202:354-366. [11] 朱雯雯, 徐有基. 带非线性边界条件的一阶微分方程多个正解的存在性[J]. 四川师范大学学报(自然科学版), 2016, 3(39):226-230. ZHU Wenwen, XU Youji. Multiplicity of positive solutions of first order differential equations with nonlinear boundary conditions[J]. Joural of Sichuan Normal University(Natural Science), 2016, 3(39):226-230. |
[1] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[2] | 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31. |
[3] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[4] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[5] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[6] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[7] | 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41. |
[8] | 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48. |
[9] | 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52. |
[10] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[11] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[12] | 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48. |
[13] | 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(03): 62-66. |
[14] | 董建伟, 程少华, 王艳萍. 一维稳态量子能量输运模型的古典解[J]. 山东大学学报(理学版), 2015, 50(03): 52-56. |
[15] | 孙艳梅1,赵增勤2. 一类二阶奇异脉冲微分方程解的存在性[J]. J4, 2013, 48(6): 91-95. |
|