您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (12): 36-41.doi: 10.6040/j.issn.1671-9352.0.2015.310

• • 上一篇    下一篇

带参数的一阶周期边值问题正解的存在性及多解性

朱雯雯   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2015-06-29 出版日期:2016-12-20 发布日期:2016-12-20
  • 作者简介:朱雯雯(1991— ), 女, 硕士研究生, 研究方向为常微分方程边值问题. E-mail:zhuwenwen58@163.com
  • 基金资助:
    国家自然科学基金资助项目(11361054);甘肃省自然科学基金资助项目(1208RJZA258)

Existence and multiplicity of positive solutions of first order periodic boundary value problems with parameter

ZHU Wen-wen   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2015-06-29 Online:2016-12-20 Published:2016-12-20

摘要: 研究了一阶周期边值问题{u'(t)+a(t)u(t)=λf(t,u(t)), t∈[0,T],u(0)=u(T)正解的个数与参数λ的关系, 其中λ>0, a∈C(R, [0,+∞))且∫T0a(θ)dθ>0, f∈C([0,T]×[0,+∞),(0,+∞))以及f=limu→∞ inf(f(t,u))/u=∞对任意的t∈[0,T]一致成立。 运用上下解方法及拓扑度理论, 获得存在λ*>0, 当λ>λ*时, 该问题不存在正解, λ=λ* 时, 该问题恰有一个正解; 0<λ<λ* 时, 该问题至少存在两个正解。

关键词: 存在性, 上下解方法, 多解性, 拓扑度理论

Abstract: We study the relationship λ between and the number of positive solutions of first order periodic boundary value problems{u'(t)+a(t)u(t)=λf(t,u(t)), t∈[0,T],u(0)=u(T),where λ is a positive parameter, a∈C(R, [0,+∞))且∫T0a(θ)dθ>0, f∈C([0,T]×[0,+∞),(0,+∞))and f=limu→∞ inf(f(t,u))/u=∞ uniformly for t∈[0,T]. By using the method of the upper and lower solutions and topological degree techniques, we obtain that the problem has no positive solution, exactly one positive solution and at least two positive solutions, when λ>λ*, λ=λ*, 0<λ<λ*, respectively.

Key words: topological degree theory, existence, upper and lower solutions, multiplicity

中图分类号: 

  • O175.8
[1] WAN Aying, JIANG Daqing. Existence of positive periodic solutions for functional differential equations[J]. Kyushu Journal of Mathematics, 2002, 56(1):193-202.
[2] GRAEF J R, KONG Lingju. Existence of multiple periodic solutions for first order functional differential equations[J]. Mathematical and Computer Modelling, 2011, 54(11-12):2962-2968.
[3] MA Ruyun, CHEN Ruipeng, CHEN Tianlan. Existence of positive periodic solutions of nonlinearfirst-order delayed differential equations[J]. Journal of Mathematical Analysis and Applications, 2011, 384:527-535.
[4] WENG P. Existence and global attractivity of periodic solution of integrodifferential equation in population dynamics[J]. Acta Applicandae Mathematicae, 1996, 12(4):427-434.
[5] WU Yuexiang. Existence of positive periodic solutions for a functional differential equation with a parameter[J]. Nonlinear Analysis, 2008, 68(7):1954-1962.
[6] PADHI S, SRIVASTAVA S. Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics[J]. Applied Mathemaatics and Computation, 2008, 203(1):1-6.
[7] HE Tieshan, YANG Fengjian, CHEN Chuanyong, et al. Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter[J]. Computers and Mathematics with Applications, 2011, 61(11):3355-3363.
[8] ZHANG Guang, CHENG Suisun. Positive periodic solutions of non-autonomous functinal differential equations depengding on a parameter[J]. Abstract and Applied Analysis, 2002, 7(5):279-286.
[9] CHRISTOPHER C T. Existence of solutions to first-order periodic boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2006, 323(2):1325-1332.
[10] WANG Haiyan. Postive periodic solutions of functional differential equations[J]. Journal of Differential Equations, 2004, 202:354-366.
[11] 朱雯雯, 徐有基. 带非线性边界条件的一阶微分方程多个正解的存在性[J]. 四川师范大学学报(自然科学版), 2016, 3(39):226-230. ZHU Wenwen, XU Youji. Multiplicity of positive solutions of first order differential equations with nonlinear boundary conditions[J]. Joural of Sichuan Normal University(Natural Science), 2016, 3(39):226-230.
[1] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[2] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[3] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[4] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[5] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[6] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[7] 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41.
[8] 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48.
[9] 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52.
[10] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[11] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[12] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48.
[13] 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(03): 62-66.
[14] 董建伟, 程少华, 王艳萍. 一维稳态量子能量输运模型的古典解[J]. 山东大学学报(理学版), 2015, 50(03): 52-56.
[15] 孙艳梅1,赵增勤2. 一类二阶奇异脉冲微分方程解的存在性[J]. J4, 2013, 48(6): 91-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!