您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 84-88.doi: 10.6040/j.issn.1671-9352.0.2016.610

• • 上一篇    下一篇

带弱奇性的二阶阻尼微分方程正周期解的存在性

何志乾1, 苗亮英2   

  1. 1. 青海大学基础课教学与研究部, 青海 西宁 810016;2. 青海民族大学数学与统计学院, 青海 西宁 810007
  • 收稿日期:2016-12-30 出版日期:2017-10-20 发布日期:2017-10-12
  • 作者简介:何志乾(1987— ), 男, 硕士, 助教, 研究方向为非线性常微分方程边值问题.E-mail: zhiqianhe1987@163. com
  • 基金资助:
    青海大学2015年度中青年基金(2015-QGY-12)

Periodic solutions for second order singular damped differential equations with a weak singularity

  1. 1. Teaching and Research Department of Basic Courses, Qinghai University, Xining 810016, Qinghai, China;
    2. College of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, Qinghai, China
  • Received:2016-12-30 Online:2017-10-20 Published:2017-10-12

摘要: 通过研究一类带周期边界条件的二阶微分算子的性质, 运用 Schauder 不动点定理获得了一类奇异二阶阻尼微分方程 正周期解的存在性, 所得结论推广和改进了已有工作的相关结果。

关键词: 正周期解, 阻尼, 存在性

Abstract: This article study some qualitative properties of the second order differential operator with periodic conditions, by using the Schauders fixed-point theorem. We obtained the existence of positive periodic solutions of a class of singular second-order damped differential equations. The conclusions in this paper perfect the existed results.

Key words: positive periodic solutions, damped, existence

中图分类号: 

  • O175.8
[1] LAZER A C, SOLIMINI S. On periodic solutions of nonlinear differential equations with singularities[J]. Proc Amer Math Soc, 1987, 99: 109-114.
[2] TORRES P J. Weak singularities may help periodic solutions to exist[J]. J Differential Equations, 2007, 232(1): 277-284.
[3] MA Ruyun, CHEN Ruipeng, HE Zhiqian. Positive periodic solutions of second-order differential equations with weak singularities[J]. Appl Math Comput, 2014, 232(23): 97-103.
[4] CAO Zhongwei, JIANG Daqing. Periodic solutions of seond order singular coupled systems[J]. Nonlinear Anal, 2009, 71(9): 3661-3667.
[5] TORRES P J. Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem[J]. J Differential Equations, 2003, 190: 643-662.
[6] CABDAD A, CID J Á. On the sign of the Greens function associated to Hills equation with an indefinite potential[J]. Appl Math Comput, 2008, 205(1): 303-308.
[7] LIU Bingmei, LIU Lishan, WU Yonghong. Existence of nontrivial periodic solutions for a nonlinear second order periodic boundary value problem[J]. Nonlinear Anal, 2010, 72(7-8): 3337-3345.
[8] ZHANG Zhongxin, WANG Junyu. On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations[J]. J Math Anal Appl, 2003, 281(1): 99-107.
[9] LI Xiong, ZHANG Ziheng. Periodic solutions for second-order differential equations with a singular nonlinearity[J]. Nonlinear Anal, 2008, 69(11): 3866-3876.
[10] MA Ruyun. Nonlinear periodic boundary value problems with sign-changing Greens function[J]. Nonlinear Anal, 2011, 74(5): 1714-1720.
[11] MA Ruyun, XU Jia, HAN Xiaoling. Global bifurcation of positive solutions of a second-order periodic boundary value problem with indefinite weight[J]. Nonlinear Anal, 2011, 74: 3379-3385.
[12] HALK R, TORRES P J. Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign[J]. Appl Math Comput, 2011, 217(19): 7599-7611.
[13] DEIMLING K. Nonlinear functional analysis [M]. Berlin: Springer, 1985.
[1] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[2] 张亚娟,吕艳. 带有变阻尼的随机振动方程的逼近[J]. 山东大学学报(理学版), 2018, 53(4): 59-65.
[3] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[4] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[5] 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60.
[6] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[7] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[8] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[9] 罗李平,罗振国,曾云辉. 一类带阻尼项的拟线性双曲系统的(全)振动性问题[J]. 山东大学学报(理学版), 2016, 51(6): 73-77.
[10] 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41.
[11] 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52.
[12] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[13] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[14] 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41.
[15] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!