您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 59-65.doi: 10.6040/j.issn.1671-9352.0.2017.343

• • 上一篇    下一篇

带有变阻尼的随机振动方程的逼近

张亚娟,吕艳*   

  1. 南京理工大学 理学院, 江苏 南京 210094
  • 收稿日期:2017-06-30 出版日期:2018-04-20 发布日期:2018-04-13
  • 通讯作者: 吕艳(1981— ),女,博士,副教授,研究方向为随机偏微分方程的动力行为. E-mail:lvyan1998@aliyun.com E-mail:2283206268@qq.com
  • 作者简介:张亚娟(1991— ),女,硕士研究生,研究方向为随机微分方程的逼近. E-mail:2283206268@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11671204)

Approximation of stochastic vibration equations with variable damping

ZHANG Ya-juan, LYU Yan*   

  1. College of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2017-06-30 Online:2018-04-20 Published:2018-04-13

摘要: 研究带有变阻尼和奇异扰动的随机振动方程的逼近问题,证明了当奇异扰动趋向0时, 原方程的解由相应的确定性方程的解进行逼近。

关键词: 随机振动方程, 变阻尼, 逼近

Abstract: The approximation of a stochastic vibration equation with variable damping and singular perturbation is studied in this paper. It is proved that when the singular perturbation tends to 0, the solution of the original equation is approximated by the solution of the corresponding deterministic equation.

Key words: approximation, stochastic vibration equation, variable damping

中图分类号: 

  • O211.63
[1] LYU Yan, WANG Wei. Limiting dynamics for stochastic wave equations[J]. Journal of Differential Equations, 2008, 244(1):1-23.
[2] FREIDLIN M, HU W, WENTZELL A. Small mass asymptotic for the motion with vanishing friction[J]. Stochastic Processes and their Applications, 2013, 123(1):45-75.
[3] RAMONA WESTERMANN. Smoluchowski-Kramers approximation for stochastic differential equations and applications in behavioral finance[D]. North Rhine Westphalia: Universitat Bielefeld, 2006.
[4] FREIDLIN M. Some remarks on the Smoluchowski-Kramers approximation[J]. Journal of Statistical Physics, 2004, 117(3):617-634.
[5] CERRAI S, FREIDLIN M, SALINS M. On the Smoluchowski-Kramers approximation for SPDEs and its interplay with large deviations and long time behavior[J]. Discrete and Continuous Dynamical Systems(Series A), 2017, 37(1):33-76.
[6] CERRAI S, FREIDLIN M. Averaging principle for a class of stochastic reaction—diffusion equations[J]. Probability Theory and Related Fields, 2009, 144(1/2):137-177.
[7] LYU Yan, ROBERTS A J. Averaging approximation to singularly perturbed nonlinear stochastic wave equations[J]. Journal of Mathematical Physics, 2012, 53(6):559-588.
[8] LYU Yan, WANG Wei. Limit behavior of nonlinear stochastic wave equations with singular perturbation[J]. Discrete and Continuous Dynamical Systems(Series B), 2012, 13(1):175-193.
[9] LYU Yan, ROBERTS A J. Large deviation principle for singularly perturbed stochastic damped wave equations[J]. Stochastic Analysis and Applications, 2014, 32(1):50-60.
[10] WONG E, ZAKAI M. On the convergence of ordinary integrals to stochastic integrals[J]. Annals of Mathematical Statistics, 1965, 36(5):1560-1564.
[11] BERNT Øksendal. 随机微分方程导论与应用[M].北京:科学出版社, 2012. BERNT Øksendal. Stochastic differential equations[M]. Beijing: Science Press, 2012.
[12] 李静. Cauchy-Schwarz不等式的四种形式的证明及应用[J].宿州学院学报, 2008, 23(6):95-96. LI Jing.The proof and application of four forms of Cauchy-Schwarz inequality[J].Journal of Suzhou University, 2008, 23(6):95-96.
[1] 肖炜茗,王贵君. 基于Bernstein多项式的SISO三层前向神经网络的设计与逼近[J]. 山东大学学报(理学版), 2018, 53(9): 55-61.
[2] 程璐,魏悦川,李安辉,潘晓中. Midori算法的多维零相关线性分析[J]. 山东大学学报(理学版), 2018, 53(2): 88-94.
[3] 张艳艳,闫超. 基于第四类Chebyshev多项式零点的Lagrange插值多项式逼近[J]. 山东大学学报(理学版), 2017, 52(8): 10-16.
[4] 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57.
[5] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[6] 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23.
[7] 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83.
[8] 刁群,石东洋. 拟线性黏弹性方程一个新的H 1-Galerkin混合有限元分析[J]. 山东大学学报(理学版), 2016, 51(4): 90-98.
[9] 张厚超, 朱维钧, 王俊俊. 非线性四阶双曲方程一个低阶混合元方法的超收敛和外推[J]. 山东大学学报(理学版), 2015, 50(12): 35-46.
[10] 樊明智, 王芬玲, 石东洋. 广义神经传播方程最低阶新混合元格式的高精度分析[J]. 山东大学学报(理学版), 2015, 50(08): 78-89.
[11] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28-35.
[12] 李娇. Caputo分数阶微分方程初值问题解的存在性与惟一性[J]. J4, 2013, 48(4): 60-64.
[13] 梁茂林,代丽芳,杨晓亚. 线性流形上行反对称矩阵反问题的最小二乘解及最佳逼近[J]. J4, 2012, 47(4): 121-126.
[14] 段晨霞1,孙刚2,王贵君1*. 正则模糊神经网络对保极大值函数类的泛逼近性[J]. J4, 2012, 47(3): 81-86.
[15] 孟晓然1,石东伟2. 拟线性抛物问题各向异性R-T混合元分析[J]. J4, 2012, 47(2): 36-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!