山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 59-65.doi: 10.6040/j.issn.1671-9352.0.2017.343
张亚娟,吕艳*
ZHANG Ya-juan, LYU Yan*
摘要: 研究带有变阻尼和奇异扰动的随机振动方程的逼近问题,证明了当奇异扰动趋向0时, 原方程的解由相应的确定性方程的解进行逼近。
中图分类号:
[1] LYU Yan, WANG Wei. Limiting dynamics for stochastic wave equations[J]. Journal of Differential Equations, 2008, 244(1):1-23. [2] FREIDLIN M, HU W, WENTZELL A. Small mass asymptotic for the motion with vanishing friction[J]. Stochastic Processes and their Applications, 2013, 123(1):45-75. [3] RAMONA WESTERMANN. Smoluchowski-Kramers approximation for stochastic differential equations and applications in behavioral finance[D]. North Rhine Westphalia: Universitat Bielefeld, 2006. [4] FREIDLIN M. Some remarks on the Smoluchowski-Kramers approximation[J]. Journal of Statistical Physics, 2004, 117(3):617-634. [5] CERRAI S, FREIDLIN M, SALINS M. On the Smoluchowski-Kramers approximation for SPDEs and its interplay with large deviations and long time behavior[J]. Discrete and Continuous Dynamical Systems(Series A), 2017, 37(1):33-76. [6] CERRAI S, FREIDLIN M. Averaging principle for a class of stochastic reaction—diffusion equations[J]. Probability Theory and Related Fields, 2009, 144(1/2):137-177. [7] LYU Yan, ROBERTS A J. Averaging approximation to singularly perturbed nonlinear stochastic wave equations[J]. Journal of Mathematical Physics, 2012, 53(6):559-588. [8] LYU Yan, WANG Wei. Limit behavior of nonlinear stochastic wave equations with singular perturbation[J]. Discrete and Continuous Dynamical Systems(Series B), 2012, 13(1):175-193. [9] LYU Yan, ROBERTS A J. Large deviation principle for singularly perturbed stochastic damped wave equations[J]. Stochastic Analysis and Applications, 2014, 32(1):50-60. [10] WONG E, ZAKAI M. On the convergence of ordinary integrals to stochastic integrals[J]. Annals of Mathematical Statistics, 1965, 36(5):1560-1564. [11] BERNT Øksendal. 随机微分方程导论与应用[M].北京:科学出版社, 2012. BERNT Øksendal. Stochastic differential equations[M]. Beijing: Science Press, 2012. [12] 李静. Cauchy-Schwarz不等式的四种形式的证明及应用[J].宿州学院学报, 2008, 23(6):95-96. LI Jing.The proof and application of four forms of Cauchy-Schwarz inequality[J].Journal of Suzhou University, 2008, 23(6):95-96. |
[1] | 肖炜茗,王贵君. 基于Bernstein多项式的SISO三层前向神经网络的设计与逼近[J]. 山东大学学报(理学版), 2018, 53(9): 55-61. |
[2] | 程璐,魏悦川,李安辉,潘晓中. Midori算法的多维零相关线性分析[J]. 山东大学学报(理学版), 2018, 53(2): 88-94. |
[3] | 张艳艳,闫超. 基于第四类Chebyshev多项式零点的Lagrange插值多项式逼近[J]. 山东大学学报(理学版), 2017, 52(8): 10-16. |
[4] | 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57. |
[5] | 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71. |
[6] | 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23. |
[7] | 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83. |
[8] | 刁群,石东洋. 拟线性黏弹性方程一个新的H 1-Galerkin混合有限元分析[J]. 山东大学学报(理学版), 2016, 51(4): 90-98. |
[9] | 张厚超, 朱维钧, 王俊俊. 非线性四阶双曲方程一个低阶混合元方法的超收敛和外推[J]. 山东大学学报(理学版), 2015, 50(12): 35-46. |
[10] | 樊明智, 王芬玲, 石东洋. 广义神经传播方程最低阶新混合元格式的高精度分析[J]. 山东大学学报(理学版), 2015, 50(08): 78-89. |
[11] | 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28-35. |
[12] | 李娇. Caputo分数阶微分方程初值问题解的存在性与惟一性[J]. J4, 2013, 48(4): 60-64. |
[13] | 梁茂林,代丽芳,杨晓亚. 线性流形上行反对称矩阵反问题的最小二乘解及最佳逼近[J]. J4, 2012, 47(4): 121-126. |
[14] | 段晨霞1,孙刚2,王贵君1*. 正则模糊神经网络对保极大值函数类的泛逼近性[J]. J4, 2012, 47(3): 81-86. |
[15] | 孟晓然1,石东伟2. 拟线性抛物问题各向异性R-T混合元分析[J]. J4, 2012, 47(2): 36-41. |
|