您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 77-83.doi: 10.6040/j.issn.1671-9352.0.2017.187

• • 上一篇    下一篇

a-Weyl定理的判定及其摄动

孔莹莹1,曹小红1*,戴磊2   

  1. 1.陕西师范大学数学与信息科学学院, 陕西 西安 710119;2.渭南师范学院数理学院, 陕西 渭南 714099
  • 收稿日期:2017-04-26 出版日期:2017-10-20 发布日期:2017-10-12
  • 通讯作者: 曹小红(1972— ), 女, 博士, 教授, 博士生导师, 研究方向为算子理论. E-mail:xiaohongcao@snnu.edu.cn E-mail:yingyingkongshida@163.com
  • 作者简介:孔莹莹(1994— ), 女, 硕士研究生, 研究方向为算子理论. E-mail:yingyingkongshida@163.com
  • 基金资助:
    国家自然科学基金资助项目(11471200,11501419,11371012,11571213);陕西师范大学中央高校基本科研业务费专项资金资助(GK201601004);渭南市科技计划项目(2016KYJ-3-3);陕西省教育厅项目(17JK0279);渭南师范学院自然科学人才项目(15ZRRC10)

Judgement of a-Weyls theorem and its perturbations

KONG Ying-ying1, CAO Xiao-hong1*, DAI Lei2   

  1. 1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China;
    2. College of Mathematics and Physics, Weinan Normal University, Weinan 714099, Shaanxi, China
  • Received:2017-04-26 Online:2017-10-20 Published:2017-10-12

摘要: 设H为无限维复可分的Hilbert空间, B(H)为H上的有界线性算子的全体。 T∈B(H)称为是满足a-Weyl定理, 若σa(T)\σaw(T)=πa00(T), 其中σa(T), σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱, πa00(T)={λ∈iso σa(T):0<dim N(T-λI)<∞}。 本文通过定义新的谱集, 给出了算子演算满足a-Weyl定理的判定方法, 同时也考虑了a-Weyl定理的摄动。

关键词: a-Weyl定理, 逼近点谱, 紧摄动

Abstract: Let H be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For T∈B(H), we call a-Weyls theorem holds for T if σa(T)\σaw(T)=πa00(T), where σa(T)and σaw(T)denote the approximate point spectrum and essential approximate point spectrum respectively, and πa00 (T)={λ∈iso σa(T):0N(T-λI)<∞}. Using the new spectrum defined in this paper, we investigate a-Weyls theorem for operator functional. In addition, we explore the compact perturbation of a-Weyls theorem.

Key words: approximate point spectrum, a-Weyls theorem, compact perturbation

中图分类号: 

  • O177.2
[1] RAKOCEVIC V. Approximate point spectrum and commuting compact perturbations[J]. Glasgow Mathematical Journal, 1986, 28(2):193-198.
[2] WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392.
[3] BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279.
[4] BERBERIAN S K. The Weyl spectrum of an operator[J]. Indiana University Mathematics Journal, 1970, 20(20):529-544.
[5] COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288.
[6] ISTRATESCU, VASILE I. On Weyls spectrum of an operator. I[J]. Revue Roumaine Des Mathematiques Pures Et Appliquees, 1972, 17:1049-1059.
[7] CAO Xiaohong, GUO Maozheng, MENG Bin. Weyl spectra and Weyls theorem[J]. Journal of Mathematical Analysis Applications, 2003, 288(2):193-206.
[8] DUNFORD N. Linear operators: part 1 general theory[M]. Switzerland: Interscience Publishers, 1958.
[9] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163(1):18-49.
[10] CONWAY J B. A course in functional analysis[M]. Berlin: Springer-Verlag, 1990.
[11] HOON L S, YOUNG L W. On Weyls theorem(II)[J]. Mathematica Japonicae, 1996, 43:549-553.
[12] RAKOCEVIC V. Semi-Fredholm operators with finite ascent or descent and perturbations[J]. Proceedings of the American Mathematical Society, 1995, 123(12):3823-3825.
[13] LAY D C. Spectral analysis using ascent, descent, nullity and defect[J]. Mathematische Annalen, 1970, 184(3):197-214.
[1] 宋佳佳,曹小红,戴磊. 上三角算子矩阵SVEP微小紧摄动的判定[J]. 山东大学学报(理学版), 2017, 52(4): 61-67.
[2] 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15-21.
[3] 吴学俪, 曹小红, 张敏. 有界线性算子的单值扩张性质的摄动[J]. 山东大学学报(理学版), 2015, 50(12): 5-9.
[4] 崔苗苗, 王碧玉, 曹小红. 算子矩阵的一个注记[J]. 山东大学学报(理学版), 2014, 49(10): 56-61.
[5] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90-95.
[6] 于维,曹小红*. 拓扑一致降标与单值延拓性质[J]. J4, 2013, 48(4): 10-14.
[7] 赵海燕,曹小红*. Helton类算子的(ω1)性质的稳定性[J]. J4, 2013, 48(4): 15-19.
[8] 史维娟,曹小红*. Weyl定理的稳定性的判定[J]. J4, 2012, 47(4): 24-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!