山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 77-83.doi: 10.6040/j.issn.1671-9352.0.2017.187
孔莹莹1,曹小红1*,戴磊2
KONG Ying-ying1, CAO Xiao-hong1*, DAI Lei2
摘要: 设H为无限维复可分的Hilbert空间, B(H)为H上的有界线性算子的全体。 T∈B(H)称为是满足a-Weyl定理, 若σa(T)\σaw(T)=πa00(T), 其中σa(T), σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱, πa00(T)={λ∈iso σa(T):0<dim N(T-λI)<∞}。 本文通过定义新的谱集, 给出了算子演算满足a-Weyl定理的判定方法, 同时也考虑了a-Weyl定理的摄动。
中图分类号:
[1] RAKOCEVIC V. Approximate point spectrum and commuting compact perturbations[J]. Glasgow Mathematical Journal, 1986, 28(2):193-198. [2] WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. [3] BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279. [4] BERBERIAN S K. The Weyl spectrum of an operator[J]. Indiana University Mathematics Journal, 1970, 20(20):529-544. [5] COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288. [6] ISTRATESCU, VASILE I. On Weyls spectrum of an operator. I[J]. Revue Roumaine Des Mathematiques Pures Et Appliquees, 1972, 17:1049-1059. [7] CAO Xiaohong, GUO Maozheng, MENG Bin. Weyl spectra and Weyls theorem[J]. Journal of Mathematical Analysis Applications, 2003, 288(2):193-206. [8] DUNFORD N. Linear operators: part 1 general theory[M]. Switzerland: Interscience Publishers, 1958. [9] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1966, 163(1):18-49. [10] CONWAY J B. A course in functional analysis[M]. Berlin: Springer-Verlag, 1990. [11] HOON L S, YOUNG L W. On Weyls theorem(II)[J]. Mathematica Japonicae, 1996, 43:549-553. [12] RAKOCEVIC V. Semi-Fredholm operators with finite ascent or descent and perturbations[J]. Proceedings of the American Mathematical Society, 1995, 123(12):3823-3825. [13] LAY D C. Spectral analysis using ascent, descent, nullity and defect[J]. Mathematische Annalen, 1970, 184(3):197-214. |
[1] | 宋佳佳,曹小红,戴磊. 上三角算子矩阵SVEP微小紧摄动的判定[J]. 山东大学学报(理学版), 2017, 52(4): 61-67. |
[2] | 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15-21. |
[3] | 吴学俪, 曹小红, 张敏. 有界线性算子的单值扩张性质的摄动[J]. 山东大学学报(理学版), 2015, 50(12): 5-9. |
[4] | 崔苗苗, 王碧玉, 曹小红. 算子矩阵的一个注记[J]. 山东大学学报(理学版), 2014, 49(10): 56-61. |
[5] | 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90-95. |
[6] | 于维,曹小红*. 拓扑一致降标与单值延拓性质[J]. J4, 2013, 48(4): 10-14. |
[7] | 赵海燕,曹小红*. Helton类算子的(ω1)性质的稳定性[J]. J4, 2013, 48(4): 15-19. |
[8] | 史维娟,曹小红*. Weyl定理的稳定性的判定[J]. J4, 2012, 47(4): 24-27. |
|