您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 81-87.doi: 10.6040/j.issn.1671-9352.0.2016.314

• • 上一篇    下一篇

一类具有时滞的周期流行病模型的动力学分析

王双明   

  1. 兰州财经大学信息工程学院, 甘肃 兰州 730020
  • 收稿日期:2016-06-29 出版日期:2017-01-20 发布日期:2017-01-16
  • 作者简介:王双明(1987— ),男,讲师,研究方向为偏微分方程、动力系统. E-mail:wsm@lzufe.edu.cn
  • 基金资助:
    兰州财经大学校级科研项目(Lzufe201622)

Dynamical analysis of a class of periodic epidemic model with delay

WANG Shuang-ming   

  1. School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, Gansu, China
  • Received:2016-06-29 Online:2017-01-20 Published:2017-01-16

摘要: 利用动力系统的方法,研究了一个带有时间周期和时滞的细菌传播模型,通过对相应周期特征值问题的分析,建立了系统的全局动力学。

关键词: 周期流行病模型, 正周期解, 全局吸引性, 时滞

Abstract: A time-periodic and delayed epidemic system modeling the spread of bacteria is studied by method of dynamical systems. In terms of corresponding periodic eigenvalue problem, we establish the global dynamics of the system.

Key words: delay, positive periodic solutions, global attractivity, periodic epidemic model

中图分类号: 

  • O175
[1] CAPASSO V. Mathematical structures of epidemic systems(lecture notes in biomath)[M]. Heidelberg: Springer-Verlag, 1993: 59-75.
[2] KUANG Yang. Delay differential equations with applications in population dynamics[M]. Boston: Academic Press, 1993: 119-143.
[3] SMITH H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. Mathematical surveys and monographs[M]. Providence: American Mathematical Society, 1995: 145-161.
[4] SMOLLER J. Shock waves and reaction-diffusiom equations[M]. Berlin: Springer-Verlag, 1983: 181-198.
[5] 王智诚, 王双明. 一类时间周期的时滞反应扩散模型的空间动力学研究[J]. 兰州大学学报(自然科学版), 2013(4): 535-540. WANG Zhicheng, WANG Shuangming. Spatial dynamics of a class of delayed nonlocal reaction-diffusion model with time period[J]. Journal of Lanzhou University(Natural Sciences), 2013(4):534-540.
[6] ZHAO Xiaoqiang. Dynamical systems in population biology[M]. New York: Springer-Verlag, 2003: 63-98.
[7] ZHANG Liang, WANG Zhicheng. Spatial dynamics of a diffusive predator-prey model with stage structure[J]. Discrete Continuous Dynamical Systems Ser B, 2015, 20(6):1831-1853.
[8] ZHANG Liang, WANG Zhicheng, ZHAO Xiaoqiang. Threshold dynamics of a time periodic reaction—diffusion epidemic model with latent period[J]. Journal of Differential Equations, 2015, 258(9):3011-3036.
[9] CAPASSO V, MADDALENA L. Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases[J]. J Math Biology, 1981, 13(2):173-184.
[10] WU Shiliang. Entire solutions in a bistable reaction-diffusion system modeling man-environment-man epidemics[J]. Nonlinear Analysis: Real World Applications, 2012, 13(5):1991-2005.
[11] WU Shiliang, WANG Haiyan. Front-like entire solutions for monostable reaction-diffusion systems[J]. Journal of Dynamics and Differential Equations, 2013, 25(2):505-533.
[12] YANG Yunrui, LI Wantong, WU Shiliang. Exponential stability of traveling fronts in a diffusion epidemic system with delay[J]. Nonlinear Analysis: Real World Applications, 2011, 12(2):1223-1234.
[13] HESS P. Periodic-parabolic boundary value problems and positivity[M]. Harlow, UK: Longman Scientific & Technical, 1991: 30-38.
[14] MARTIN R H, SMITH H L. Abstract functional differential equations and Reaction-Diffusion systems[J]. Trans Amer Math Soc, 1990, 321(1):1-44.
[15] MARTIN R H. Nonlinear operators and differential equations in banach spaces[M]. New York: John Wiley and Sons, 1976: 354-366.
[16] ZHAO Xiaoqiang. Global attractivity and stability in some monotonediscrete dynamical systems[J]. Bull Austral Math Soc, 1996, 53(2):305-324.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87.
[3] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[4] 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94.
[5] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[6] 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64.
[7] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[8] 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80.
[9] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[10] 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120.
[11] 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135.
[12] 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97.
[13] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
[14] 徐嫚. 带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(06): 69-74.
[15] 范进军, 路晓东. 时标上带强迫项的二阶中立型时滞动力方程非振动解的存在性[J]. 山东大学学报(理学版), 2015, 50(05): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!