您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 74-80.doi: 10.6040/j.issn.1671-9352.0.2016.090

• • 上一篇    下一篇

具有测量噪声的时滞多智能体系统的一致性问题

王亚军1,2,张申1,胡青松1,刘峰2,张玉婷2   

  1. 1. 中国矿业大学物联网研究中心, 江苏 徐州 221008;2. 中国矿业大学理学院, 江苏 徐州 221008
  • 收稿日期:2016-03-07 出版日期:2017-01-20 发布日期:2017-01-16
  • 作者简介:王亚军(1978— ),男,博士研究生,研究方向为智能天线技术及随机数学研究.E-mail:411149996@139.com
  • 基金资助:
    国家科技支撑计划项目(2013BAK06B05);国家自然科学基金资助项目(51204177)

Consensus problem of time-delayed multi-agent system with measurement noise

WANG Ya-jun1,2, ZHANG Shen1, HU Qing-song1, LIU Feng2, ZHANG Yu-ting2   

  1. 1. Internet of Things(Sensor Mine)Research Center, China University of Mining &
    Technology, Xuzhou 221008, Jiangsu, China;
    2. School of Science, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
  • Received:2016-03-07 Online:2017-01-20 Published:2017-01-16

摘要: 为研究噪声和时滞对多智能体系统平均一致性产生的影响,建立了具有测量噪声的时滞多智能体系统的模型,利用随机微分方程的稳定性理论,得到了多智能体系统以概率1实现平均一致性的充分条件。针对时滞和噪声对多智能体系统一致性行为的影响进行了仿真实验,验证了理论结果的正确性。

关键词: 噪声, 一致性, 时滞, 多智能体系统

Abstract: To study the influence of noise and time delay on the average consensus of multi-agent systems, the model of time delay multi agent system with measurement noise was established. Using the stability theory of stochastic differential equations, sufficient conditions for the almost surely average consensus were derived. The influence of time delay and noise on the consensus behavior of multi-agent system was simulated, and the correctness of the theoretical results was verified.

Key words: time-delay, multi-agent system, consensus, noise

中图分类号: 

  • TP13
[1] VICSEK T, ZAFEIRISA. Collective motion [J].Physics Reports, 2012, 517:71-140.
[2] 伍巧凤.多智能体一致性迭代学习控制研究[D].杭州:浙江大学,2014. WU Qiaofeng. Lterative learning control of multi-agent consense[D]. Hangzhou: Zhejiang University, 2014.
[3] REYNOLDSCW. Flocks, herd, and schools: a distributed behavioral model[J].Computer Graphics, 1987, 21(4):15-24.
[4] VICSEK T, CZIROK A, BENJACOB E, et al. Novel type of phase transition in a system of self-deriven particles[J]. Physical Review Letters, 1995, 75:1226-1229.
[5] JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J].IEEE Transacrions on Automatic Control, 2003, 48:988-1001.
[6] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transacrion on Automatic Control, 2004, 49:1520-1532.
[7] XIAO F, WANG L. State consensus for multi-agents systems with switching topologies and time-varying delays[J].International Journal of Control, 2006, 79:1277-1284.
[8] LIN P, JIA Y, LI L.Distributed robust consensus control in directed networks of agents with time-delay[J]. Systems Control Lett, 2008, 57:643-653.
[9] LIN P, JIA Y. Average consensus in networks of multi-agents with both switching topology and coupling time-delay[J].Physica: A, 2008, 387:303-313.
[10] COUZIN I D, KRAUSE J, FRANKS N R, et al. Effective leadership and decision-making in animal groups on the move[J].Nature, 2005, 3:513-516.
[11] OLFATI-SABER R.Flocking for multi-agent dynamic systems: algorithms and theory[J].IEEE Transacrion on Automatic Control, 2006, 51:401-420.
[12] 吕淑玲,侍红军,刘峰.主从多智能体网络快速随机一致性[J]. 山东大学学报(理学版),2014,49(1):65-70. L(¨overU)Shuling, SHI Hongjun, LIU Feng. Fsat stochastic consensus of leader-following multi-agent network[J]. Journal of Shandong University(Natural Science), 2014, 49(1):65-70.
[13] CARLI R, FAGNANI F, SPERANZON A, et al. Communication constraints in the average consensus problem[J].Automatica, 2008, 44:671-684.
[14] 张志钢,张承慧,崔鹏,等.有观测时滞线性系统的白噪声最优估计[J]. 山东大学学报(理学版),2009,44(6):63-68. ZHANG Zhigang, ZHANG Chenhui, CUI Peng, et al. Optimal white noise estimatorsfor linear systems with delayed measurements[J].Journal of Shandong University(Natural Science), 2009, 44(6):63-68.
[15] WANG L, LIU Z. Robust consensus of multi-agent systems with noise[J]. Science in China Series F-Information Sciences, 2009, 52:824-834.
[16] WANG L, GUO L.Robust consensus and soft control of multi-agent systems with noise[J].Journal of Systems Science & Complexity, 2008, 21(3):406-415.
[17] YUAN C, MAO X. Robust stability and controllability of stochastic differential delay equations with Markovian switching[J].Automatica, 2004, 40:343-354.
[18] LI T, ZHANG J. Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions[J]. Automatica, 2009, 45:1929-1936.
[19] SUN Y, RUAN J. Consensus problems of multi-agent systems with noise perturbation[J].Chinese Physics B, 2008, 17(11):4137-4141.
[20] SUN Y, ZHAO D H, RUAN J. Consensus in noisy environments with switching topology and time-varying delays[J].Physica: A, 2010, 389:4149-4161.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87.
[3] 马明,边莉娜,刘华. 基于事件点联合分布的自激滤过泊松过程的低阶矩[J]. 山东大学学报(理学版), 2018, 53(4): 55-58.
[4] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[5] 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94.
[6] 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29.
[7] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[8] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[9] 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64.
[10] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[11] 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120.
[12] 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135.
[13] 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97.
[14] 葛美侠, 李莹, 赵建立, 邢海云. 网络演化博弈的策略一致性[J]. 山东大学学报(理学版), 2015, 50(11): 113-118.
[15] 邓龙娟, 祝东进, 申广君. 赋权分数布朗运动的幂变差与应用[J]. 山东大学学报(理学版), 2015, 50(06): 19-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!