山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 74-80.doi: 10.6040/j.issn.1671-9352.0.2016.090
王亚军1,2,张申1,胡青松1,刘峰2,张玉婷2
WANG Ya-jun1,2, ZHANG Shen1, HU Qing-song1, LIU Feng2, ZHANG Yu-ting2
摘要: 为研究噪声和时滞对多智能体系统平均一致性产生的影响,建立了具有测量噪声的时滞多智能体系统的模型,利用随机微分方程的稳定性理论,得到了多智能体系统以概率1实现平均一致性的充分条件。针对时滞和噪声对多智能体系统一致性行为的影响进行了仿真实验,验证了理论结果的正确性。
中图分类号:
[1] VICSEK T, ZAFEIRISA. Collective motion [J].Physics Reports, 2012, 517:71-140. [2] 伍巧凤.多智能体一致性迭代学习控制研究[D].杭州:浙江大学,2014. WU Qiaofeng. Lterative learning control of multi-agent consense[D]. Hangzhou: Zhejiang University, 2014. [3] REYNOLDSCW. Flocks, herd, and schools: a distributed behavioral model[J].Computer Graphics, 1987, 21(4):15-24. [4] VICSEK T, CZIROK A, BENJACOB E, et al. Novel type of phase transition in a system of self-deriven particles[J]. Physical Review Letters, 1995, 75:1226-1229. [5] JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J].IEEE Transacrions on Automatic Control, 2003, 48:988-1001. [6] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transacrion on Automatic Control, 2004, 49:1520-1532. [7] XIAO F, WANG L. State consensus for multi-agents systems with switching topologies and time-varying delays[J].International Journal of Control, 2006, 79:1277-1284. [8] LIN P, JIA Y, LI L.Distributed robust consensus control in directed networks of agents with time-delay[J]. Systems Control Lett, 2008, 57:643-653. [9] LIN P, JIA Y. Average consensus in networks of multi-agents with both switching topology and coupling time-delay[J].Physica: A, 2008, 387:303-313. [10] COUZIN I D, KRAUSE J, FRANKS N R, et al. Effective leadership and decision-making in animal groups on the move[J].Nature, 2005, 3:513-516. [11] OLFATI-SABER R.Flocking for multi-agent dynamic systems: algorithms and theory[J].IEEE Transacrion on Automatic Control, 2006, 51:401-420. [12] 吕淑玲,侍红军,刘峰.主从多智能体网络快速随机一致性[J]. 山东大学学报(理学版),2014,49(1):65-70. L(¨overU)Shuling, SHI Hongjun, LIU Feng. Fsat stochastic consensus of leader-following multi-agent network[J]. Journal of Shandong University(Natural Science), 2014, 49(1):65-70. [13] CARLI R, FAGNANI F, SPERANZON A, et al. Communication constraints in the average consensus problem[J].Automatica, 2008, 44:671-684. [14] 张志钢,张承慧,崔鹏,等.有观测时滞线性系统的白噪声最优估计[J]. 山东大学学报(理学版),2009,44(6):63-68. ZHANG Zhigang, ZHANG Chenhui, CUI Peng, et al. Optimal white noise estimatorsfor linear systems with delayed measurements[J].Journal of Shandong University(Natural Science), 2009, 44(6):63-68. [15] WANG L, LIU Z. Robust consensus of multi-agent systems with noise[J]. Science in China Series F-Information Sciences, 2009, 52:824-834. [16] WANG L, GUO L.Robust consensus and soft control of multi-agent systems with noise[J].Journal of Systems Science & Complexity, 2008, 21(3):406-415. [17] YUAN C, MAO X. Robust stability and controllability of stochastic differential delay equations with Markovian switching[J].Automatica, 2004, 40:343-354. [18] LI T, ZHANG J. Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions[J]. Automatica, 2009, 45:1929-1936. [19] SUN Y, RUAN J. Consensus problems of multi-agent systems with noise perturbation[J].Chinese Physics B, 2008, 17(11):4137-4141. [20] SUN Y, ZHAO D H, RUAN J. Consensus in noisy environments with switching topology and time-varying delays[J].Physica: A, 2010, 389:4149-4161. |
[1] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[2] | 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87. |
[3] | 马明,边莉娜,刘华. 基于事件点联合分布的自激滤过泊松过程的低阶矩[J]. 山东大学学报(理学版), 2018, 53(4): 55-58. |
[4] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[5] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[6] | 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29. |
[7] | 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110. |
[8] | 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71. |
[9] | 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64. |
[10] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[11] | 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120. |
[12] | 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135. |
[13] | 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97. |
[14] | 葛美侠, 李莹, 赵建立, 邢海云. 网络演化博弈的策略一致性[J]. 山东大学学报(理学版), 2015, 50(11): 113-118. |
[15] | 邓龙娟, 祝东进, 申广君. 赋权分数布朗运动的幂变差与应用[J]. 山东大学学报(理学版), 2015, 50(06): 19-26. |
|