您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 85-94.doi: 10.6040/j.issn.1671-9352.0.2017.509

• • 上一篇    

带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图

张道祥,孙光讯,马媛,陈金琼,周文   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241002
  • 收稿日期:2017-09-27 出版日期:2018-04-20 发布日期:2018-04-13
  • 作者简介:张道祥(1979— ), 男, 博士, 副教授, 研究方向为微分方程理论及其应用. E-mail:18955302433@163.com
  • 基金资助:
    国家自然科学基金资助项目(11302002,11671013)

Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect

ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241002, Anhui, China
  • Received:2017-09-27 Online:2018-04-20 Published:2018-04-13

摘要: 研究了一类带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统的空间动力学。首先利用稳定性理论和分支理论得到了系统正平衡点局部稳定和Hopf分支的条件;然后利用规范型理论和中心流形定理得到Hopf分支的方向和分支周期解的稳定性;进一步地, Hopf分支的不稳定导致了系统空间斑图的形成;最后通过数值模拟验证了理论结果的正确性,展示了系统具有丰富的动力学行为。

关键词: 捕食者-食饵系统, Holling-III功能反应, Hopf分支, 时滞

Abstract: The spatial dynamics in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect is studied. Firstly, the local stability of positive equilibrium of the system and the condition of Hopf bifurcation are obtained by using the stability theory and the bifurcation theory. Secondly, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem.Furthermore, the instability of Hopf bifurcation leads to the formation of spatial pattern of system. Finally, the correctness of the theoretical results is verified by numerical simulations, which shows that the system has rich dynamic behavior.

Key words: predator-prey system, Hopf bifurcation, Holling-III functional response, delay

中图分类号: 

  • O175.21
[1] YANG W S, LI X P. Global asymptotical stability for a diffusive predator-prey model with ratio-dependent Holling type III functional response[J]. Differential Equations & Dynamical Systems, 2017(3):1-9.
[2] LI Y Y, WANG J F. Spatiotemporal patterns of a predator-prey system with an Allee effect and Holling type III functional response[J]. International Journal of Bifurcation & Chaos, 2016, 26(5):1650088.
[3] ZHAO H Y, ZHANG X B, HUANG X X. Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion[J]. Applied Mathematics and Computation, 2015, 266:462-480.
[4] FEI L. Positive almost periodic solution for a class of Nicholsons blowflies model with a linear harvesting term[J]. Nonlinear Analysis: Real World Applications, 2012, 13(2):686-693.
[5] ATABAIGI A. Bifurcation and chaos in a discrete time predator-prey system of Leslie type with generalized Holling type III functional response[J]. Journal of Applied Analysis & Computation, 2017, 7(2):411-426.
[6] SUN G Q, WANG C H, WU Z Y. Pattern dynamics of a Gierer-Meinhardt model with spatial effects[J]. Nonlinear Dynamics, 2017, 88(2):1385-1396.
[7] SONG Y L, YANG R, SUN G Q. Pattern dynamics in a Gierer-Meinhardt model with a saturating term[J]. Applied Mathematical Modelling, 2017, 46:476-491.
[8] 张道祥, 赵李鲜, 胡伟. 一类三种群食物链模型中交错扩散引起的Turing不稳定[J]. 山东大学学报(理学版), 2017, 52(1):88-97. ZHANG Daoxiang, ZHAO Lixian, HU Wei. Turing instability induced by cross-diffusion in a three species food chain model[J]. Journal of Shandong University(Natural Science), 2017, 52(1):88-97.
[9] HAN R J, DAI B X. Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect[J]. Applied Mathematics and Computation, 2017, 312:177-201.
[10] HUANG C D, Meng Y J, Cao J D, et al. New bifurcation results for fractional BAM neural network with leakage delay[J]. Chaos Solitons & Fractals, 2017, 100:31-44.
[11] 彭剑, 李禄欣, 胡霞, 等. 时滞影响下受控斜拉索的参数振动稳定性[J]. 应用数学和力学, 2017, 38(2):181-188. PENG Jian, LI Luxin, HU Xia, et al. Parametric vibration stability of controlled stay cables with time delays[J]. Applied Mathematics and Mechanics, 2017, 38(2):181-188.
[12] WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos[M]. New York: Springer, 2003.
[13] KUZNETSOV Y A. Elements of applied bifurcation theory[M]. New York: Springer-Verlag, 1995.
[14] KUANG Yang. Delay differential equations: with applications in population dynamics[M]. New York: Academic Press, 1993.
[15] WU J. Theory and applications of partial functional differential equations[M]. Berlin: Springer, 1996: 119.
[16] WANG G, CHEN B S, LI M, et al. Hopf bifurcation in a delayed differential-algebraic economic system with a rate-dependent harvesting[J]. Journal of Mathematics, 2016, 36(4):690-704.
[17] ZHANG F R, LI Y. Stability and Hopf bifurcation of a delayed-diffusive predator-prey model with hyperbolic mortality and nonlinear prey harvesting[J]. Nonlinear Dynamics, 2017, 88(2):1397-1412.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87.
[3] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[4] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[5] 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64.
[6] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[7] 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80.
[8] 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120.
[9] 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135.
[10] 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97.
[11] 范进军, 路晓东. 时标上带强迫项的二阶中立型时滞动力方程非振动解的存在性[J]. 山东大学学报(理学版), 2015, 50(05): 45-50.
[12] 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(05): 82-87.
[13] 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79.
[14] 甄艳, 王林山. S-分布时滞随机广义细胞神经网络的均方指数稳定性分析[J]. 山东大学学报(理学版), 2014, 49(12): 60-65.
[15] 伍代勇, 张海. 具有Allee效应和时滞的单种群离散模型的稳定性和分支[J]. 山东大学学报(理学版), 2014, 49(07): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!