您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 82-87.doi: 10.6040/j.issn.1671-9352.0.2014.237

• 论文 • 上一篇    下一篇

中立型多变时滞随机微分方程的稳定性

王春生1, 李永明2   

  1. 1. 广州大学华软软件学院, 广东 广州 510990;
    2. 上饶师范学院, 江西 上饶 334001
  • 收稿日期:2014-05-23 出版日期:2015-05-20 发布日期:2015-05-29
  • 作者简介:王春生(1982-),男,硕士,讲师,研究方向为随机微分方程稳定性.E-mail:paperspring@163.com
  • 基金资助:
    国家自然科学基金资助项目(11061029);江西省自然科学基金资助项目(20122BAB201007)

Stability of neutral stochastic differential equations with some variable delays

WANG Chun-sheng1, LI Yong-ming2   

  1. 1. South China Institute of Software Engineering, Guangzhou University, Guangzhou 510990, Guangdong, China;
    2. Shangrao Normal University, Shangrao 334001, Jiangxi, China
  • Received:2014-05-23 Online:2015-05-20 Published:2015-05-29

摘要: 利用Banach不动点方法研究了一类中立型多变时滞随机微分方程零解的均方渐近稳定性,同时对所得的零解均方渐近稳定给出了严格的证明。之前,几乎所有的专家和学者在利用Banach不动点方法研究随机微分方程的稳定性时,主要是通过引入合适的函数来完成和实现。和大多数研究的方法不同,在研究多变时滞随机微分方程稳定性时,文中将引入的函数拆分,然后利用拆分后的函数去构造算子,再利用Banach不动点研究其稳定性,推广和改进了前人研究的结果。文中最后给出了一个例题来说明结果。

关键词: Banach不动点, 中立型随机微分方程, 多变时滞, 均方渐近稳定性

Abstract: We consider a class of linear scalar neutral stochastic differential equation with some variable delays and give conditions to ensure that the zero solution is asymptotically stable in mean square by means of Banach fixed point method. Previously, when almost all the experts and scholars study the stability of stochastic differential equations by means of Banach fixed point, it is usually achieved and accomplished by introducing appropriate functions. Being different from most other study methods, we will split the introduced functions when studying the stability of stochastic differential equations with some variable delays to construct the operator in this paper. Then, study its stability by ways of Banach fixed point, promote and improve the previous studies. Also an example was given to illustrate the results in the paper.

Key words: Banach fixed points, neutral stochastic differential equations,some variable delays, asymptotically stable in mean square

中图分类号: 

  • O211.63
[1] BURTON T A. Fixed points and stability of a nonconvolution equation[J]. Proceedings of the Ame-rican Mathematical Society, 2004, 132(12):3679-3687.
[2] BURTON T A, FURUMOCHI T. A note on stability by Schauder's theorem[J].Funkcialaj Ekvacioj, 2001, 44:73-82.
[3] BURTON T A, FURUMOCHI T. Fixed points and problems in stability theory[J].Dynamical Systems and Applications, 2001, 10(1):89-116.
[4] BURTON T A, FURUMOCHI T. Krasnoselskii's fixed point theorem and stability[J]. Nonlinear Analysis, 2002, 49(4):445-454.
[5] RAFFOUL Y N. Stability in neutral nonlinear differential equations with functional delays using fixed-point theory[J]. Mathematical and Computer Modelling, 2004, 40(7):691-700.
[6] ZHANG Bo. Fixed points and stability in differential equations with variable delays[J]. Nonlinear Analysis, 2005, 63:e233-e242.
[7] LUO Jiaowan. Fixed points and stability of neutral stochastic delay differential equations[J]. Journal of Mathematical Analysis and Applications, 2007, 334(1):431-440.
[8] WU Meng, HUANG Nanjing, ZHAO Changwen. Fixed points and stability in neutural stochastic differential equations with variable delays[J]. Hindawi Pubilishing Corporation Fixed Points Theory and Applications, 2008, 11(2):1-11.
[9] 王春生. 不动点与一类随机积分微分方程的稳定性(英文)[J]. 广州大学学报:自然科学版,2009,8(2):49-52. WANG Chunsheng. Fixed points and stability of stochastic integro-differential equations[J]. Journal of Guangzhou University: Natural Science Edition, 2009, 8(2):49-52.
[10] 王春生. 中立型随机积分微分方程的稳定性[J].四川理工学院学报:自然科学版,2011,24(1):41-43. WANG Chunsheng. The stability of neutral stochastic integro-differential equations[J]. Journal of Sichuan University of Science & Engineering: Natural Science Edition, 2011, 24(1):41-43.
[11] 王春生. 不动点与非卷积型随机Vollterra微分方程的稳定性[J].荆楚理工学院学报,2011,26(2):30-33. WANG Chunsheng. Fixed points and stability of stochastic Vollterra differential equations of nonconvolution type[J]. Journal of Jingchu University of Technology, 2011, 26(2):30-33.
[12] 王春生.随机微分方程稳定性的两种不动点方法的比较[J].四川理工学院学报:自然科学版, 2012, 25(4):81-84. WANG Chunsheng. Comparison of two kinds of fixed point method of the stability of stochastic differential equations[J]. Journal of Sichuan University of Science & Engineering: Natural Science Edition, 2012, 25(4):81-84.
[1] 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20.
[2] 宗西举,王中华. 一维黏性Camassa-Holm方程描述的液体-固体的相互作用[J]. J4, 2011, 46(2): 34-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!