山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 74-81.doi: 10.6040/j.issn.1671-9352.0.2014.316
王翠莲, 刘晓
WANG Cui-lian, LIU Xiao
摘要: 假设分红只发生在一些随机的观测时间且按照障碍策略进行分红,得到了破产前折现分红随机变量的矩母函数、n阶矩函数和破产时间Laplace变换满足的微分方程,也得到了期望破产前折现分红和破产时间Laplace变换的显式表达式。
中图分类号:
[1] DE FINETTI B. Su un'impostazione alternativa dell teoria collectiva del rischio[C]//Transaction of the 15th International Congress of Actuaries. New York: [s.n.]. 1957, 2:433-443. [2] AVANZI B. Strategies for dividend distribution: a review[J]. North American Actuarial Journal, 2009, 13(2):217-251. [3] ALBRECHER H, THONHAUSER S. Optimality results for dividend problems in insurance[J]. Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A: Matematicas, 2009, 103(2):295-320. [4] ALBRECHER H, CHEUNG E C K, THONHAUSER S. Randomized observation periods for the compound Poisson risk model: dividends[J]. Astin Bulletin, 2011, 41(2):645-672. [5] ALBRECHER H, GERBER H U, SHIU E S W. The optimal dividend barrier in the Gamma-Omega model[J]. European Actuarial Journal, 2011, 1(1):43-55. [6] ALBRECHER H, BUERLE N, THONHAUSER S. Optimal dividend-payout in random discrete time[J]. Statistics and Risk Modeling, 2011, 28(3):251-276. [7] AVANZI B, CHEUNG E C K, WONG B. On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency[J]. Insurance: Mathematics and Economics, 2013, 52(1):98-113. [8] AVANZI B, TU V, WONG B. On optimal periodic dividend strategies in the dual model with disunion[J].Insurance: Mathematics and Economics, 2014, 55:210-224. [9] PENG Dan, LIU Donghai, LIU Zaiming. Dividend problems in the dual risk model with exponentially distributed observation time[J]. Statistics and Probability Letters, 2013, 83(3):841-849. [10] LIU Xiao, CHEN Zhenlong. Dividend problems in the dual model with diffusion and exponentially distributed observation time[J]. Statistics and Probability Letters, 2014, 87:175-183. [11] WANG Cuilian, LIU Xiao. Dividend problems in the diffusion model with interest and exponentially distributed observation time[J]. Journal of Applied Mathematics, 2014, 2014:814835.1-814835.2. [12] CHEN Xiao, XIAO Ting, YANG Xiangqun. A Markov-modulated jump-diffusion risk model with randomized observation periods and threshold dividend strategy[J]. Insurance: Mathematics and Economics, 2014, 54:76-83. [13] WANG Cuilian, LIU Xiao, XU Lin. The optimal dividend and capital injection strategies in the classical risk model with randomized observation periods[J]. Chinese Journal of Applied Probability and Statistics, 2014, 30(6):661-672. |
[1] | 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57. |
[2] | 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88. |
[3] | 陈洁, 吕玉华. 带分红的稀疏风险模型的期望折现罚金函数[J]. 山东大学学报(理学版), 2015, 50(09): 78-83. |
[4] | 刘晓. 具有PH(n)理赔时间间隔的Sparre-Andersen 模型中的分红问题[J]. 山东大学学报(理学版), 2015, 50(06): 7-12. |
[5] | 邓龙娟, 祝东进, 申广君. 赋权分数布朗运动的幂变差与应用[J]. 山东大学学报(理学版), 2015, 50(06): 19-26. |
[6] | 徐天明1,吴清太2*. 双投资策略风险模型下破产概率的渐近估计[J]. 山东大学学报(理学版), 2014, 49(1): 92-98. |
[7] | 杜丽娜, 徐久成, 刘洋洋, 孙林. 基于三支决策风险最小化的风险投资评估应用研究[J]. 山东大学学报(理学版), 2014, 49(08): 66-72. |
[8] | 孟祥波1,张立东1,杜子平2. 均值-方差标准下带跳的保险公司投资与再保险策略[J]. 山东大学学报(理学版), 2014, 49(05): 36-40. |
[9] | 刘宝亮1, 2,温艳清1, 2. 修理工有多重休假的退化系统的可靠性[J]. 山东大学学报(理学版), 2014, 49(05): 45-49. |
[10] | 杨朝强. 一类混合跳-扩散分数布朗运动的欧式回望期权定价[J]. J4, 2013, 48(6): 67-74. |
[11] | 周艳丽1,2,张卫国1. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J]. J4, 2013, 48(10): 68-77. |
[12] | 吕小妮1,王艳彩2,高岳林2. BVaR风险度量下限制性卖空的单位风险收益最大投资组合模型[J]. J4, 2013, 48(05): 92-96. |
[13] | 杨朝强. 混合分数布朗运动下一类欧式回望期权定价[J]. J4, 2012, 47(9): 105-109. |
[14] | 徐怀. 对偶风险模型最优分红值的离散估计方法[J]. J4, 2012, 47(5): 115-121. |
[15] | 解时韶丽,陈善镇,蒋晓芸. 分形生物组织传热方程及其解析[J]. J4, 2012, 47(10): 105-108. |
|