您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (12): 81-88.doi: 10.6040/j.issn.1671-9352.0.2017.089

• • 上一篇    下一篇

分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性

崔静,梁秋菊   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241000
  • 收稿日期:2017-03-10 出版日期:2017-12-20 发布日期:2017-12-22
  • 作者简介:崔静(1982— ), 女,博士, 教授, 研究方向为随机微分方程及其应用. E-mail:jcui123@126.com
  • 基金资助:
    国家自然科学基金资助项目(11401010);安徽省自然科学基金资助项目(1708085MA03)

Existence and controllability of nonlocal stochastcic integro-differential equations driven by fractional Brownian motion

CUI Jing, LIANG Qiu-ju   

  1. School of Mathematics &
    Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2017-03-10 Online:2017-12-20 Published:2017-12-22

摘要: 本文利用巴拿赫不动点定理和随机分析理论, 研究了由分数布朗运动驱动的一类非局部随机积分 微分系统的存在性和可控性,给出了温和解存在及完全可控的充分条件,并举例说明了所得结论的有效性。

关键词: 随机积分微分方程, 分数布朗运动, 可控性, 非局部条件

Abstract: We study the existence and controllability of nonlocal stochastcic integro-differential equations driven by fractional Brownian motion in a real separable Hilbert space. Sufficient conditions are derived by using the Banach fixed point theorem and stochastic analysis thoery. An example is provided to illustrate the theory.

Key words: controllability, fractional Brownian motion, nonlocal condition, stochastcic integro-differential equations

中图分类号: 

  • O211.63
[1] DUNCAN T E, PASIKDUNCAN B, MASLOWSKI B. Fractional Brownian motion and stochastic equations in Hilbert spaces[J]. Stochastics and Dynamics, 2011, 2(2):225-250.
[2] FEYEL D, PRADELLE A D L. On fractional Brownian processes[J]. Potential Analasis, 1999, 10(3):273-288.
[3] CHRISTODOULOU-VOLOS C, SIOKIS F M. Long range dependence in stock market returns[J]. Applied Financial Economics, 2006, 16(18):1331-1338.
[4] MASLOWSKI B, NUALART D. Evolution equations driven by a fractional Brownian motion[J]. Journal of Functional Analasis, 2003, 202(1):277-305.
[5] MILLER R K. An integro-differential equation for heat conductors with memory[J]. Journal of Mathematical Analasis and Applications, 1978, 66(2):313-332.
[6] LAKSMIKANTHAM V, RAMA M R M. Theory of integro-differential Equations[M]. London: Gordon and Breach Science, 1995: 275-283.
[7] LEVIN J J, NOHEL J A. The integro-differential equations of a class of nuclear reactors with delayed neutrons[J]. Archive for Rational Mechanics Analysis, 1968, 31(2):151-172.
[8] DEBBOUCHE A, BALEANU D. Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems[J]. Computers Mathematics with Applications, 2015, 62(3):1442-1450.
[9] BALACHANDRANK K, DIVYA S, RIVERO M, et al. Controllability of nonlinear implicit neutral fractional volterra integrodifferential systems[J]. Journal of Vibration and Control, 2015, 21(9):641-646.
[10] AISSANI K, BENCHOHRA M. Controllability of fractional integrodifferential equations with state-dependent delay[J]. Integral Equations and Applications, 2015, 28(2):149-167.
[11] LAKHEL E H. Controllability of neutral stochastic functional integro-differential equations driven by fractional Brownian motion[J]. Stochastic Analysis and Applications, 2016, 34(3):427-440.
[12] CUI Jing, YAN Litan. Controllability of neutral stochastic evolution equations driven by fractional Brownian motion[J]. Acta Mathematica Scientia, 2017, 37B(1):1-12.
[13] BYSZEWSKI L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem[J]. Journal of Mathematical Analysis and Applications, 1991, 162(2):494-505.
[14] KENG Deng. Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions[J]. Journal of Mathematical Analysis and Applications, 1993, 179(2):630-637.
[15] DEBBOUCHE A. Fractional nonlocal impulsive quasilinear multi-delay integro-differential systems[J]. Advances in Difference Equations, 2011, 2011(1):1-10.
[16] DEBBOUCHE A. Fractional evolution integro-differential systems with nonlocal conditions[J]. Advances in Dynamical Systems and Applications, 2010, 5(1):49-60.
[17] LI Fang. Existence and uniqueness of mild solution for fractional intergrodifferential equations of neutral type with nonlocal conditions[J]. Mathematica Slovaca, 2012, 62(5):921-936.
[18] CUI Jing, WANG Zhi. Nonlocal stochastic integro-differential equations driven by fractional Brownian motion[J]. Advances in Difference Equations, 2016, 2016(1):115.
[19] NUALART D. The Malliavin calculus and related topics[M]. Berlin: Springer-Verlag, 2006.
[20] GRIMMER R C. Resolvent operators for Integral equations in a Banach space[J]. Transactions of the American Mathematical Society, 1982, 273(1):333-349.
[21] KLAMKA J. Stochastic controllability of linear systems with delay in control[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2007, 55(1):23-29.
[1] 邓龙娟, 祝东进, 申广君. 赋权分数布朗运动的幂变差与应用[J]. 山东大学学报(理学版), 2015, 50(06): 19-26.
[2] 邓磊, 赵建立, 刘华, 李莹. k-值控制网络的可控性与可观性[J]. 山东大学学报(理学版), 2015, 50(04): 27-35.
[3] 杨朝强. 一类混合跳-扩散分数布朗运动的欧式回望期权定价[J]. J4, 2013, 48(6): 67-74.
[4] 杨朝强. 混合分数布朗运动下一类欧式回望期权定价[J]. J4, 2012, 47(9): 105-109.
[5] 杨和. α-范数下非局部脉冲发展方程 mild 解的存在性[J]. J4, 2011, 46(11): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!