您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 36-41.doi: 10.6040/j.issn.1671-9352.2.2017.156

• • 上一篇    下一篇

具有时滞效应的股票期权定价

陈丽,林玲*   

  1. 中国矿业大学(北京)理学院, 北京 100083
  • 收稿日期:2017-04-12 出版日期:2018-04-20 发布日期:2018-04-13
  • 通讯作者: 林玲(1992— ),女,硕士研究生,研究方向为随机控制、金融数学. E-mail:993167573@qq.com E-mail:chenli@cumtb.edu.cn
  • 作者简介:陈丽(1982— ),女,博士,副教授,研究方向为随机控制、金融数学. E-mail:chenli@cumtb.edu.cn
  • 基金资助:
    国家自然科学基金青年基金资助项目(11301530)

Stock option pricing with time delay

CHEN Li, LIN Ling*   

  1. Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
  • Received:2017-04-12 Online:2018-04-20 Published:2018-04-13

摘要: 主要研究标的股票价格满足随机微分延迟方程(stochastic differential delay equation, SDDE)时欧式期权的定价公式,采用倒向随机微分方程(backward stochastic differential equation, BSDE)方法进行处理,值得注意的是得到的财富方程与经典的BSDE有差异,该方程为时滞BSDE。利用时滞BSDE与超前随机微分方程(advanced stochastic differential equations, ASDE)的对偶关系,给出股票价格具有时滞的欧式看涨期权的定价公式。

关键词: 时滞倒向随机微分方程, 时滞影响, 超前随机微分方程, 期权定价

Abstract: In this article, we mainly develop an formula for pricing European option when stock price follows a stochastic differential delay equation(SDDE).The backward stochastic differential equation(BSDE)method is used, but it is worth noting that the wealth equation is different from the classical BSDE, and it is delayed BSDE. By the dual relationship of delayed BSDE and advanced stochastic differential equation(ASDE), we obtain the formula for pricing European call option.

Key words: delayed backward stochastic differential equation, advanced stochastic differential equation, delay impact, option pricing

中图分类号: 

  • F830.91
[1] COOTNER P H. The random character of stock market prices[M]. Cambridge: MIT Press, 1964.
[2] MERTON R C. Theory of rational option pricing[J]. The Bell Journal of Economics and Management Science, 1973, 4(1):141-183.
[3] MERTON R C. Continuous-time finance[M]. Oxford: Basil Blackwell, 1990.
[4] SCOTT L. Option pricing when the variance changes randomly: theory, estimation and an application[J]. Journal of Financial and Quantitative Analysis, 1987, 22(4):419-438.
[5] RUBINSTEIN M. Implied binomial trees[J]. Journal of Finance, 1994, 49(3):771-818.
[6] HU Yaozhong, ØKSENDAL B. Fractional white noise calculus and applications to finance[J]. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2003, 6(1):1-32.
[7] SCHOENMAKERS J, KLOEDEN P. Robust option replication for a black and scholes model extended with nondeterministic trends[J]. Journal of Applied Mathematics and Stochastic Analysis, 1999, 12(2):113-120.
[8] ARRIOJAS M, HU Yaozhong, MOHAMMED S E, et al. A delayed black and scholes formula[J]. Stochastic Analysis and Applications, 2007, 25:471-492.
[9] KAZMERCHUK Y, SWISHCHUK A, WU Jianhong. The pricing of option for securities markets with delayed response[J]. Mathematics and Computers Simulation, 2007, 75:69-79.
[10] BISMUT J M. An introductory approach to duality in optimal stochastic control[J]. SIAM Review, 1978, 20(1):62-78.
[11] PARDOUX E, PENG Shige. Adapted solution of a backward stochastic differential equation[J]. Systems Control Lett, 1990, 14:55-61.
[12] DUFFIE D, EPSTEIN L G. Stochastic differential utility[J]. Econometrica, 1992, 60(2):353-394.
[13] DELONG Ł, IMKELLER P. Backward stochastic differential equations with time delayed generatorsresults and counterexamples[J]. Annals of Applied Probability, 2010, 20(4):1512-1536.
[14] MOHAMMED SE A. Stochastic functional differential equations[M]. Boston: Pitman Advanced Publishing Program, 1984.
[15] MOHAMMED SE A. Stochastic differential equations with memory: theory, examples and applications[J]. Progress in Probability, 1996, 42:1-77.
[16] CHEN Li, HUANG Jianhui. Stochastic maximum principle for controlled backward delayed system via advanced stochastic differential equation[J]. Journal of Optimization Theory and Applications, 2015, 167(3):1112-1135.
[17] DELONG Ł. Applications of time-delayed backward stochastic differential equations to pricing, hedging and portfolio management[J]. Quantitative Finance, 2010, 20(3):333-418.
[18] SHI Jingtao, WANG Guangchen. A non-zero sum differential game of BSDE with time-delayed generator and applications[J]. IEEE Transactions on Automatic Control, 2016, 61(7):1959-1964.
[19] ØKSENDAl B. Stochastic differential equations: an introduction with applications[M]. Berlin: Springer, 2003.
[1] 郭尊光1,孔涛2*,李鹏飞2, 张微2. 基于最优实施边界的美式期权定价的数值方法[J]. J4, 2012, 47(3): 110-119.
[2] 张慧1,2,孟纹羽1,来翔3. 不确定环境下障碍再装期权的动态定价模型
——基于BSDE解的期权定价方法
[J]. J4, 2011, 46(3): 52-57.
[3] 陈祥利. 脆弱期权的公司价值分形定价模型[J]. J4, 2010, 45(11): 109-114.
[4] 孙 鹏,张 蕾,赵卫东 . 美式期权定价问题的一类有限体积数值模拟方法[J]. J4, 2007, 42(6): 1-06 .
[5] 孙 鹏,赵卫东 . 亚式期权定价问题的交替方向迎风有限体积方法[J]. J4, 2007, 42(6): 16-21 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!