您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 65-73.doi: 10.6040/j.issn.1671-9352.0.2016.059

• • 上一篇    下一篇

超记忆梯度法在大规模信号重构问题中的应用

李双安,陈凤华,赵艳伟   

  1. 郑州工商学院公共基础教学部, 河南 郑州 451400
  • 收稿日期:2016-02-03 出版日期:2017-01-20 发布日期:2017-01-16
  • 作者简介:李双安(1980— ),男,硕士研究生,讲师,研究方向为数字信号处理.E-mail:lishuangan@163.com
  • 基金资助:
    河南省高等学校重点科研项目(17A110032);河南省教育厅科学技术研究重点项目(12B110011)

The application of a supermemory gradient method for large-scale signal reconstruction problem

LI Shuang-an, CHEN Feng-hua, ZHAO Yan-wei   

  1. Department of Public Basic Courses Teaching, Zhengzhou Technology and Business University, Zhengzhou 451400, Henan, China
  • Received:2016-02-03 Online:2017-01-20 Published:2017-01-16

摘要: 研究了用基于非单调线搜索技术的超记忆梯度算法解决大规模信号恢复问题。 利用平滑切片绝对偏差惩罚函数(SCAD)代替l1正则化最小二乘问题的l1范数惩罚函数,因SCAD的一个局部二次逼近是凸且可微的,所以目标函数的梯度和海瑟阵易计算。该算法的特点:每一步迭代充分利用前面多步迭代信息,避免目标函数海瑟阵的储存和计算,因此它适合解决大规模信号恢复问题。在某些假设下,证明了提出算法的收敛性,数值实验表明本文提出的算法是可行的。

关键词: 压缩感知, 平滑切片绝对偏差惩罚函数, 超记忆梯度法, 稀疏信号

Abstract: We study a nonmonotone supermemory gradient algorithm for solving large-scale sparse signal recovery problems. The l1 penalty function of the constrained l1-regularized least-squares recovery problem is replaced by the smoothly clipped absolute deviation(SCAD)sparsity-promoting penalty function. In addition, a convex and differentiable local quadratic approximation for the SCAD function is employed to render the computation of the gradient and Hessian tractable. The proposed method sufficiently uses the previous multi-step iterative information at each iteration, avoids the storage and computation of matrices associated with the Hessian of objective functions, thus it is suitable to solve large-scale sparse signal recovery problems. Under some assumptions, the convergence properties of the proposed algorithm are analyzed. Numerical results are also reported to show the efficiency of this proposed method.

Key words: compressed sensing, SCAD penalty function, supermemory gradient method, sparse signal

中图分类号: 

  • O221.1
[1] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30.
[2] DONOHO D L, TSAIG Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86:549-571.
[3] CANDES E J, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2007, 52(12):5406-5425.
[4] DONOHO D L, SAUNDERS M A, CHEN S S. Atomic decomposition by basis pursuit[J]. Siam Journal on Scientific Computing, 1998, 20(1):33-61.
[5] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, 1996, 58(1):267-288.
[6] CANDÈS E, ROMBERG J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2006, 23(3):969-985.
[7] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597.
[8] HUNTER D R. Variable selection using MM algorithms[J]. Annals of statistics, 2005, 33(4):1617-1642.
[9] FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456):1348-1360.
[10] SUN Wenyu, YUAN Yaxiang. Optimization theory and methods: nonlinear programming[M]. USA: Springer, 2006.
[11] GRIPPO L, LAMPARIELLO F. LUCIDI S. A Nonmonotone line search technique for newtons method[J]. SIAM Journal on Numerical Analysis, 1986, 23(4):707-716.
[12] DAI Y H. On the nonmonotone line search[J]. Journal of Optimization Theory and Applications, 2002, 112(2):315-330.
[13] ZHANG H, HAGER W W. A nonmonotone line search technique and its application to unconstrained optimization[J]. Siam J Optim, 2004, 14(4):1043-1056.
[14] HU S L, HUANG Z H, LU N. A non-monotone line search algorithm for unconstrained optimization[J]. Journal of Scientific Computing, 2010, 42(1):38-53.
[15] CUI Z, WU B. A new modified nonmonotone adaptive trust region method for unconstrained optimization [J]. Computational Optimization and Applications, 2012, 53(3):795-806.
[1] 施章磊,李维国. A分级硬阈值追踪[J]. 山东大学学报(理学版), 2017, 52(8): 58-64.
[2] 张晓东,董唯光,汤旻安,郭俊锋,梁金平. 压缩感知中基于广义Jaccard系数的gOMP重构算法[J]. 山东大学学报(理学版), 2017, 52(11): 23-28.
[3] 马云艳,栾贻会*. 基于局部LRS方法的稀疏信号片段检测[J]. J4, 2012, 47(12): 1-5.
[4] 孙敏 . 一种满足夹角性质的超记忆梯度方法[J]. J4, 2008, 43(6): 68-70 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!