您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (11): 23-28.doi: 10.6040/j.issn.1671-9352.0.2017.093

• • 上一篇    下一篇

压缩感知中基于广义Jaccard系数的gOMP重构算法

张晓东1,董唯光1,2*,汤旻安1,郭俊锋3,梁金平4   

  1. 1. 兰州交通大学自动化与电气工程学院, 甘肃 兰州 730070;2. 兰州交通大学光电技术与智能控制教育部重点实验室, 甘肃 兰州 730070;3. 兰州理工大学机电工程学院, 甘肃 兰州 730050;4. 西北工业大学航天学院, 陕西 西安 710072
  • 收稿日期:2017-03-12 出版日期:2017-11-20 发布日期:2017-11-17
  • 通讯作者: 董唯光(1971— ),男,副教授,博士,研究方向为压缩感知及智能信息处理. E-mail:dongwg1971@163.com E-mail:zxdong2017@126.com
  • 作者简介:张晓东(1991— ),男,硕士研究生,研究方向为压缩感知及智能信息处理. E-mail:zxdong2017@126.com
  • 基金资助:
    国家自然科学基金资助项目(51465034);甘肃省高校基本科研业务费资助项目(213063)

gOMP reconstruction algorithm based on generalized Jaccard coefficient for compressed sensing

ZHANG Xiao-dong1, DONG Wei-guang1,2*, TANG Min-an1, GUO Jun-feng3, LIANG Jin-ping4   

  1. 1. School of Electrical Engineering and Automation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    2. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    3. School of Mechanical and Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;
    4. School of Astronautics, Northwestern Polytechnical University, Xian 710072, Shaanxi, China
  • Received:2017-03-12 Online:2017-11-20 Published:2017-11-17

摘要: 为了解决信号重构性能差的问题,提出了一种基于广义Jaccard系数的广义正交匹配追踪(generalized orthogonal matching pursuit, gOMP)重构算法。该算法利用广义Jaccard系数相似性匹配准则替换gOMP算法中的内积度量准则,优化了通过感知矩阵来选择与残差余量最匹配原子的匹配方式。实验结果表明,该算法的重构成功率不仅高于gOMP算法,同时也高于OMP、StOMP等算法。

关键词: 压缩感知, 广义Jaccard系数, 相似性匹配准则, 广义正交匹配追踪, 重构算法

Abstract: In order to solve the problem such as low reconstruction performance of the signal, we propose a generalized orthogonal matching pursuit(gOMP)reconstruction algorithm based on generalized Jaccard coefficient. The improved gOMP algorithm replaces matching criterion of inner product by similarity matching criterion of generalized Jaccard coefficient, and selects the most matching atom from projection matrix and residual signal. Experimental results show that the reconstruction success rate of proposed algorithm is much better than other algorithms, such as gOMP, OMP, StOMP and so on.

Key words: compressed sensing, generalized orthogonal matching pursuit, similarity matching criterion, reconstruction algorithm, generalized Jaccard coefficient

中图分类号: 

  • TP391
[1] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[2] TROPP J, GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
[3] NEEDELL D, VERSHYNIN R.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3):317-334.
[4] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2):1094-1121.
[5] DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C] //Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California. New York: IEEE, 2008: 581-587.
[6] WANG J, KWON S, SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12):6202-621.
[7] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9):589-592.
[8] CANDES E J, ROMBERG J. Sparsity and incoherence in compressive sampling[J].Inverse Problems, 2007, 23(3):969-985.
[9] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006, 52(2):489-509.
[10] BARANIUK R, DAVENPORT M, DEVORE R A, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3):253-263.
[11] 方红,杨海蓉.贪婪算法与压缩感知理论[J].自动化学报,2011,37(12): 1413-1421. FANG Hong, YANG Hairong. Greedy algorithms and compressed sensing[J]. Acta Automatica Sinica, 2011, 37(12):1413-1421.
[12] 裴文炯, 李少东, 杨军. 压缩感知中四种贪婪类算法重构信号性能研究[J]. 空军雷达学院学报,2012,26(5):313-317. PEI Wenjiong, LI Shaodong, YANG Jun. Performance study of signal reconstruction with four greedy algorithms in CS[J].Journal of Air Force Radar Academy, 2012, 26(5):313-317.
[13] 张宇,刘雨东,计钊.向量相似度测度方法[J].声学技术, 2009, 28(4): 532-536. ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4): 532-536.
[14] 桑乐园, 徐新峰, 张婧, 等. 基于广义Jaccard系数的微博情感新词判定[J].山东大学学报(理学版), 2015, 50(7):71-75, 79. SANG Leyuan, XU Xinfeng, ZHANG Jing, et al. New Microblog sentiment lexicon judgment based on generalized Jaccard coefficient [J]. Journal of Shandong University(Natural Science), 2015, 50(7):71-75, 79.
[1] 施章磊,李维国. A分级硬阈值追踪[J]. 山东大学学报(理学版), 2017, 52(8): 58-64.
[2] 李双安,陈凤华,赵艳伟. 超记忆梯度法在大规模信号重构问题中的应用[J]. 山东大学学报(理学版), 2017, 52(1): 65-73.
[3] 张本慧, 唐元生, 陈文兵. 密钥重构过程中的通信率[J]. 山东大学学报(理学版), 2015, 50(05): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!