您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 7-11.doi: 10.6040/j.issn.1671-9352.0.2014.379

• 论文 • 上一篇    下一篇

密钥重构过程中的通信率

张本慧1, 唐元生2, 陈文兵2   

  1. 1. 淮北师范大学数学科学学院, 安徽 淮北 235000;
    2. 扬州大学数学科学学院, 江苏 扬州 225002
  • 收稿日期:2014-08-20 出版日期:2015-05-20 发布日期:2015-05-29
  • 作者简介:张本慧(1986-),男,博士,讲师,研究方向为密码学、PEPA模型.E-mail:benhuizhang@163.com
  • 基金资助:
    国家自然科学基金资助项目(61379004);淮北师范大学青年科研项目(2014xq006)

Communication rate in the secret reconstruction phase

ZHANG Ben-hui1, TANG Yuan-sheng2, CHEN Wen-bing2   

  1. 1. School of Mathematical Science, Huaibei Normal University, Huaibei 235000, Anhui, China;
    2. School of Mathematical Science, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Received:2014-08-20 Online:2015-05-20 Published:2015-05-29

摘要: 通信率是密钥共享领域一个极其重要的概念。已有方法构造的理想(t,n)-门限密钥共享方案的通信率ρ=v/((v+t-l)l)并不能完全证明满足所给的界。在该方案的基础上,改进重构算法,得到一个更高的通信率ρ'=v/((t-l)(t-1)+tv)(≥ρ),并证明新的通信率大于下界1/t,且当重构密钥的参与者数目为l=t+v-1时,新的通信率可以达到上界v/(t+v-1)。

关键词: 密钥共享, 通信率, 重构算法

Abstract: Communication rate is an extremely important concept in the field of secret sharing. It was proved that the communication rate ρ=v/((v+t-l)l) of the ideal (t,n)-threshold secret sharing scheme constructed by the existing solution couldn't meet the bound. Based on this scheme, an improved reconstruction algorithm was proposed and a higher communication rate ρ'=v/((t-l)(t-1)+tv)(≥ρ) was figured out. The result proves that ρ' is greater than the lower bound 1/t and can achieve the upper bound v/(t+v-1) when l=t+v-1.

Key words: secret sharing, reconstruction algorithm, communication rate

中图分类号: 

  • TP309
[1] SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11):612-613.
[2] BLAKLEY G R. Safeguarding cryptographic key[C]//Proceedings of AFIPS National Computer Conference. New York: AFIPS, 1979, 48:313-317.
[3] 张本慧, 陈文兵, 唐元生. 基于签密的可验证向量空间多秘密共享方案[J]. 合肥工业大学学报:自然科学版, 2013, 36(5):555-558. ZHANG Benhui, CHEN Wenbing, TANG Yuansheng. Verifiable vector space multi-secret sharing scheme based on signcryption[J]. Journal of Hefei University of Technology: Natural Science, 2013, 36(5):555-558.
[4] 吴星星, 李志慧, 李婧. 一个可验证的多秘密共享门限方案[J]. 计算机工程与应用, 2013, 49(13):65-67. WU Xingxing, LI Zhihui, LI Jing. Threshold verifiable multi-secret sharing scheme[J]. Computer Engineering and Applications, 2013, 49(13):65-67.
[5] 许春香, 肖国镇. 门限多重秘密共享方案[J]. 电子学报, 2004, 32(10):1688-1689. XU Chunxiang, XIAO Guozhen. A threshold multiple secret sharing scheme[J]. Acta Electronic Sinica, 2004, 32(10):1688-1689.
[6] DEHKORDI M H, MASHHADI S. New efficient and practical verifiable multi-secret sharing schemes[J]. Information Sciences, 2008, 178:2262-2274.
[7] 张志芳, 刘木兰. 理性密钥共享的扩展博弈模型[J]. 中国科学: 信息科学, 2012, 42(1):32-46. ZHANG Zhifang, LIU Mulan. Rational secret sharing as extensive games[J]. Science China: Information Sciences, 2012, 42(1):32-46.
[8] WANG Daoshun, YI Feng, LI Xiaobo. On general construction for extended visual cryptography schemes[J]. Pattern Recognition, 2009, 42(11):3071-3082.
[9] 陈祺, 裴定一, 赵淦森, 等. 实现分离多级存取结构的黑盒密钥共享体制[J]. 计算机学报, 2012, 35(9):1804-1815. CHEN Qi, PEI Dingyi, ZHAO Gansen, et al. Black-box secret sharing scheme for disjunctive multi-level access structure[J]. Chinese Journal of Computers, 2012, 35(9):1804-1815.
[10] 姜莲霞, 谭晓青. 基于Bell态的量子秘密共享协议[J]. 计算机工程与应用, 2013, 49(18): 61-64. JIANG Lianxia, TAN Xiaoqing. Quantum secret sharing scheme based on bell states[J]. Computer Engineering and Applications, 2013, 49(18):61-64.
[11] WANG Huaxiong, WONG Duncan S. On secret reconstruction in secret sharing schemes[J]. IEEE Transactions on Information Theory, 2008, 54(1):473-480.
[12] ZHANG Zhifang, CHEE Y M, LING San, et al. Threshold changeable secret sharing schemes revisited[J]. Theoretical Computer Science, 2012, 418:106-115.
[1] 张晓东,董唯光,汤旻安,郭俊锋,梁金平. 压缩感知中基于广义Jaccard系数的gOMP重构算法[J]. 山东大学学报(理学版), 2017, 52(11): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!