您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 56-64.doi: 10.6040/j.issn.1671-9352.0.2016.168

• • 上一篇    下一篇

基于应急决策视角的案例检索及属性权重确定方法

郑晶1,2,王应明1*,张恺3   

  1. 1.福州大学决策科学研究所, 福建 福州 350116;2.福建江夏学院电子信息科学学院, 福建 福州 350108;3.福建船政交通职业学院信息工程系, 福建 福州 350007
  • 收稿日期:2016-04-15 出版日期:2017-01-20 发布日期:2017-01-16
  • 通讯作者: 王应明(1964— ), 男,博士, 教授, 研究方向为决策理论与方法. E-mail: msymwang@hotmail.com E-mail:zhengjing80@qq.com
  • 作者简介:郑晶(1980— ), 女, 博士, 副教授, 研究方向为决策理论与方法. E-mail:zhengjing80@qq.com
  • 基金资助:
    国家杰出青年科学基金资助项目(70925004);福建省自然科学基金资助项目(2015J01248);福建省教育厅科技项目(JB14122);福建江夏学院青年科研人才培育基金资助项目(JXZ2014009)

The method of case retrieval with determining case attribute weights based on emergency decision perspective

ZHENG Jing1, 2, WANG Ying-ming1*, ZHANG Kai3   

  1. 1. Decision Sciences Institue, Fuzhou University, Fuzhou 350116, Fujian, China;
    2. College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, Fujian, China;
    3. Department of Information Engineering, Fujian Chuanzheng Communications College, Fuzhou 350007, Fujian, China
  • Received:2016-04-15 Online:2017-01-20 Published:2017-01-16

摘要: 案例推理是突发事件中生成应急方案的一种有效方法,而案例检索是案例推理的重要步骤。针对应急决策中存在决策者的风险态度和问题与解间关联的问题,提出了基于前景理论和灰色系统理论的案例检索方法。根据前景理论定义属性距离的前景值,根据灰色系统理论定义问题与解之间的关联度,并以此构建方案偏差最小化的非线性权重优化模型,求解模型得到最优权重,最后根据相似度确定最优备选方案。通过一个应急案例来验证所提出方法的可行性。

关键词: 案例推理, 属性权重, 应急决策, 优化模型

Abstract: Case-based reasoning is one of the effective methods to generate emergency alternative in the emergency, and case retrieval is an important process. We propose a case retrieval method based on prospect theory and grey system theory to deal with the situation of considering the influence of the decision makers risk attitude and the relevance between the problem and the solution, respectively. The prospect value is defined based on the prospect theory, the correlation degree between the solution and the problem is defined according to the grey system theory. Furthermore, the nonlinear weight optimization models of minimum deviation are constructed to get the optimal weights. Then the optimal alternative can be determined according to the similarity of the emergency cases. Finally, we prove the feasibility of the proposed method through an emergency case.

Key words: case-based reasoning, emergency decision-making, optimization model, attribute weight

中图分类号: 

  • C931
[1] FAN Z P, LI Y H, WANG X, et al. Hybrid similarity measure for case retrieval in CBR and its application to emergency response towards gas explosion[J]. Expert Systems with Applications, 2014, 41(5):2526-2534.
[2] 李永海, 樊治平, 李铭洋. 解决广义不确定型决策问题的案例决策方法[J]. 系统工程学报, 2014, 29(1):21-29. LI Yonghai, FAN Zhiping, LI Mingyang. Case-based decision analyisi method for general uncertain decision making problem[J]. Journal of Systems Engineering, 2014, 29(1):21-29.
[3] 郑晶, 王应明, 叶歆. 复杂数据情形下的应急案例相似度测算方法[J].中国安全科学学报, 2014, 24(7):153-158. ZHENG Jing, WANG Yingming, YE Xin. A method for estimating similarity between emergency cases with diversity attributes data[J]. China Safety Science Journal, 2014, 24(7):153-158.
[4] YAN A, SHAO H, GUO Z. Weight optimization for case-based reasoning using membrane computing[J]. Information Sciences, 2014, 287:109-120.
[5] 顾东晓, 李兴国, 梁昌勇, 等. 案例检索及权重优化方法研究及应用[J]. 系统工程学报, 2009, 24(6):764-768. GU Dongxiao, LI Xingguo, LIANG Changyong, et al. Research on case retrieval with weight optimizing and its application[J]. Jouranl of Systems Engineering, 2009, 24(6):764-768.
[6] GU D X, LIANG C Y, BICHINDARITZ I, et al. A case-based knowledge system for safety evaluation decision making of thermal power plants[J]. Knowledge-based Systems, 2012, 26:185-195.
[7] 严爱军, 钱丽敏, 王普. 案例推理属性权重的分配模型比较研究[J]. 自动化学报, 2014, 40(9):1896-1902. YAN Aijun, QIAN Limin, WANG Pu. A comparative study of attribute weights assignment for case-based reasnong[J]. Acta Automatica Sinica, 2014, 40(9):1896-1902.
[8] AHN H, KIM K. Global optimization of case-based reasoning for breast cytology diagnosis[J]. Expert Systems with Applications, 2009, 36(1):724-734.
[9] ZHAO K, YU X. A case based reasoning approach on supplier selection in petroleum enterprises[J]. Expert Systems with Applications, 2011, 38(6):6839-6847.
[10] YEOW W L, MAHMUD R, RAJ R G. An application of case-based reasoning with machine learning for forensic autopsy[J]. Expert Systems with Applications, 2014, 41(7):3497-3505.
[11] 张春晓, 严爱军, 王普. 一种改进的案例推理分类方法研究[J]. 自动化学报, 2014, 40(9):2015-2021. ZHANG Chunxiao, YAN Aijun, WANG Pu. An improved classification approach by case-based reasoning[J]. Acta Automatica Sinica, 2014, 40(9):2015-2021.
[12] 赵辉, 严爱军, 王普. 提高案例推理分类器的可靠性研究[J]. 自动化学报, 2014, 40(9):2029-2036. ZHAO Hui, YAN Aijun, WANG Pu. On improving reliability of case-based reasoning classifier[J]. Acta Automatica Sinica, 2014, 40(9):2029-2036.
[13] KAHNEMAN D, TVERSKY A. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2):263-291.
[14] LIU Y, FAN Z P, ZHANG Y. Risk decision analysis in emergency response: a method based on cumulative prospect theory[J]. Computers & Operations Research, 2014, 42(2):75-82.
[15] 樊治平,刘洋, 沈荣鉴. 基于前景理论的突发事件应急响应的风险决策方法[J].系统工程理论与实践, 2012, 32(5):977-984. FAN Zhiping, LIU Yang, SHEN Rongjian. Risk decision analysis method for emergency response based on prospect theory[J]. Systems Engineering-Theory & Practice, 2012, 32(5):977-984.
[16] 张晓, 樊治平. 基于前景理论的风险型混合多属性决策方法[J]. 系统工程学报, 2012, 27(6):772-781. ZHANG Xiao, FAN Zhiping. Method for risky hybrid multiple attribute decision making based on prospect theory[J]. Journal of Systems Engineering, 2012, 27(6):772-781.
[17] HU J, QI J, PENG Y H. New CBR adaptation method combining with proble-solution relational analysis for mechanical design[J]. Computers in industry, 2015, 66(1):41-51.
[18] LIAO Z L, MAO X W, HANNAM P M, et al. Adaptation methodology of CBR for environmental emergency preparedness system based on an improved genetic algorithm[J]. Expert systems with applications, 2012, 39(8):7029-7040.
[19] LIN S W, CHEN S C. Parameter tuning, feature selection and weight assignment of features for case-based reasoning by artificial immune system[J]. Applied Soft Computing, 2011, 11(8):5042-5052.
[20] VUKOVIC S, DELIBASIC B, UZELAC A, et al. A case-based reasoning model that uses preference theory functions for credit scoring[J]. Expert Systems with Applications, 2012, 39(9):8389-8395.
[21] 尤天慧, 樊治平. 一种基于决策者风险态度的区间数多指标决策方法[J]. 运筹与管理, 2002, 11(5):1-4. YOU Tianhui, FAN Zhiping. A method for multiple attribute decision making with intervals based on risk attitudes of decision makers[J]. Operations Research and Management Science, 2002, 11(5):1-4.
[22] LIU H, CHEN W, KANG Z, et al. Fuzzy multiple attribute decision making for evaluating aggregate risk in green manufacturing[J]. Tsinghua Science & Technology, 2005, 10(5):627-632.
[23] YAGER R R. A general class of fuzzy connectives[J]. Fuzzy Sets and Systems,1980, 4(2):235-242.
[24] BROMILEY P. A prospect theory model of resource allocation[J]. Decision Analysis, 2009, 6(3):124-138.
[25] AVINERI E. The effect of reference point on stochastic network equilibrium[J]. Transportation Science, 2006, 40(4):409-420.
[26] TVERSKY A, KAHNEMAN D. Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4):297-323.
[27] 邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002: 135-150. DENG Julong. Grey theory foundation[M]. Wuhan: Huazhong University of Science and Technology Press, 2002: 135-150.
[1] 孙静宇,陈俊杰*,余雪丽,何秀. 基于CBR的协同Web搜索模型及应用研究[J]. J4, 2012, 47(5): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!