山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 69-74.doi: 10.6040/j.issn.1671-9352.0.2014.585
徐嫚
XU Man
摘要: 研究了带双参数的脉冲泛函微分方程 u'(t)=h(t,u(t))-λf(t,u(t-τ(t))), t∈R, t≠tk, u(t+k)-u(tk)=μIk(tk,u(tk-τ(tk))) 正周期解的存在性, 其中λ>0, μ≥0为参数, 获得了其在更一般条件下正周期解的存在性结果。主要结果的证明基于不动点指数理论。
中图分类号:
[1] LI Wantong, HUO Haifeng. Existence and global attractivity of positive periodic solutions of functional differential equations with impulses[J]. Nonlinear Analysis, 2004, 59(6):857-877. [2] CHOISY M, GUEGAN J F, ROHANI P. Dynamics of infectious diseases and pulse vaccination:teasing apart the embedded resonance effects[J]. Physica D, 2006, 223(1):26-35. [3] DONOFRIO A. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J]. Appl Math Lett, 2005, 18(7):729-732. [4] GAO Shujing, CHEN Lansun, NIETO J J, et al. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J]. Vaccine, 2006, 24(35-36):6037-6045. [5] TANG Sanyi, CHEN Lansun. Density-dependent birth rate, birth pulses and their population dynamic consequences[J]. J Math Biol, 2002, 44(2):185-199. [6] COOKE K L, KAPLAN J L. A periodicity threshold theorem for epidemic and population growth[J]. Math Biosci, 1976, 31(1-2):87-104. [7] GOPALSAMY K. Stability and oscillation in delay differential equations of population dynamics[J]. Dordrecht: Kluwer Academic Publishers Group, 1992. [8] BAI Dingyong, XU Yuantong. Periodic solutions of first order functional differential equations with periodic deviations[J]. Comput Math Appl, 2007, 53(9):1361-1366. [9] LIU Xilan, LI Wantong. Existence and uniqueness of positive periodic solutions of functional differential equations[J]. J Math Anal Appl, 2004, 293(1):28-39. [10] WANG Haiyan. Positive periodic solutions of functional differential equations[J]. Journal Differential Equations, 2004, 202(2):354-366. [11] WU Yuexiang. Existence of positive periodic solutions for a functional differential equations with a parameter[J]. Nonlinear Analysis, 2008, 68(7):1954-1962. [12] JIN Zhilong, WANG Haiyan. A note on positive periodic solutions of delayed differential equations[J]. Appl Math Lett, 2010, 23(5):581-584. [13] MA Ruyun, CHEN Ruipeng, CHEN Tianlan. Existence of positive periodic solutions of nonlinear first order delayed differential equations[J]. J Math Anal Appl, 2011, 384(2):527-535. [14] YAN Jurang. Existence of positive periodic solutions of impulsive functional differential equations with two parameters[J]. J Math Anal Appl, 2007, 327(2):854-868. [15] LI Yongkun, FAN Xuanlong, ZHAN Lili. Positive periodic solutions of functional differential equations with impulses and a parameter[J]. Comput Math Appl, 2008, 56(10):2556-2560. [16] LI Xiaoyue, LIN Xiaoning, JIANG Daqing. Existence and multiplicity of positive periodic solutions to functional differential equations with impulses effecta[J]. Nonlinear Anal, 2005, 62(4):683-701. [17] LI Jianli, SHEN Jianhua. Existence of positive periodic solutions to a class of functional differential equations with impulse[J]. Math Appl, 2004, 17(3):456-463. [18] YAN Jurang. Existence and global attractivity of positive periodic solutions for an impulsive Lasota-Wazewska model[J]. J Math Anal Appl, 2003, 279(1):111-120. |
[1] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
[2] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[3] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[4] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[5] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[6] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
[7] | 黄翠,王彩侠, 宋晓秋*,张明翠. 双参数C-半群及其应用[J]. J4, 2013, 48(10): 14-17. |
[8] | 胡兵,乔元华*. 具有脉冲积分条件的泛函微分方程解的存在性和二阶收敛性[J]. J4, 2012, 47(6): 20-27. |
[9] | 卢芳,周宗福*. 一类具p-Laplacian算子四阶奇异边值问题正解的存在性[J]. J4, 2012, 47(6): 28-33. |
[10] | 杨春风. 一类三阶三点边值问题正解的存在性和不存在性[J]. J4, 2012, 47(10): 109-115. |
[11] | 姚林红1, 赵爱民2. 非线性项变号的脉冲微分方程正解的存在性[J]. J4, 2010, 45(12): 83-87. |
[12] | 刘树宽. 奇异二阶Neumann边值问题的多解性[J]. J4, 2010, 45(10): 98-103. |
[13] | . pLaplacian边值问题的多重正解[J]. J4, 2009, 44(7): 79-82. |
[14] | 陈祥平,李仁贵. 超线性奇异脉冲微分方程的正解[J]. J4, 2009, 44(3): 45-49 . |
[15] | 俎冠兴. 边值问题的多重正解[J]. J4, 2009, 44(12): 71-76. |
|